GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 47 entries in the Bibliography.


Showing entries from 1 through 47


2020

Dynamical Properties of Peak and Time-Integrated Geomagnetic Events Inferred From Sample Entropy

We provide a comprehensive statistical analysis of the sample entropy of peak and time-integrated geomagnetic events in 2001\textendash2017, considering different measures of event strength, different geomagnetic indices, and a simplified solar wind-magnetosphere coupling function urn:x-wiley:jgra:media:jgra55526:jgra55526-math-0001. Our investigations ...

Mourenas, D.; Artemyev, A.; Zhang, X.-J.;

YEAR: 2020     DOI: 10.1029/2019JA027599

Dynamical complexity; Entropy; geomagnetic indices; Geomagnetic storms; Solar wind magnetosphere coupling

Evaluation on the Quasi-Realistic Ionospheric Prediction Using an Ensemble Kalman Filter Data Assimilation Algorithm

In this work, we evaluated the quasi-realistic ionosphere forecasting capability by an ensemble Kalman filter (EnKF) ionosphere and thermosphere data assimilation algorithm. The National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model is used as the background model in the system. The slant total electron contents (TECs) from global International Global Navigation Satellite Systems Service ground-based receivers and from the Constellation Observing System for Meteorology, ...

He, Jianhui; Yue, Xinan; Le, Huijun; Ren, Zhipeng; Wan, Weixing;

YEAR: 2020     DOI: 10.1029/2019SW002410

Comparison of Reference Heights of O/N 2 and ∑O/N 2 Based on GUVI Dayside Limb Measurement

We define a new thermospheric concept, the reference heights of O/N2, referring to a series of thermospheric heights corresponding to the fixed ratios of O to N2 number density. Here, based on Global Ultraviolet Imager (GUVI) limb measurement, we compare O/N2 column density ratio (∑O/N2) and the reference heights of O/N2. We choose the transition height of O and N2 (transition height hereafter), a special reference height at which O number density is equa ...

Yu, Tingting; Ren, Zhipeng; Yu, You; Yue, Xinan; Zhou, Xu; Wan, Weixing;

YEAR: 2020     DOI: 10.1029/2019SW002391

O/N2 ratio

2019

A new method for deriving the nightside thermospheric density based on GUVI dayside limb observations

We propose a new method to derive the nightside thermsopheric density by extending GUVI dayside limb observations using empirical orthogonal function (EOF) analysis. First, we acquire the GUVI dayside total mass density during 2002-2005 to construct a preliminary empirical model (EM). Simultaneously, we decompose the background thermospheric density from US Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE-00) model into different empirical orthogonal functions (EOFs). The decompo ...

Yu, Tingting; Ren, Zhipeng; Yu, You; Wan, Weixing;

YEAR: 2019     DOI: 10.1029/2019SW002304

Comparison of Thermospheric Density Between GUVI Dayside Limb Data and CHAMP Satellite Observations: Based on Empirical Model

The Global Ultraviolet Imager (GUVI) aboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite senses far ultraviolet airglow emissions in the thermosphere. The retrieved altitude profiles of thermospheric neutral density from GUVI daytime limb scans are significant for ionosphere-thermosphere study. Here, we use the profiles of the main neutral density to derive the total mass density during the period 2002\textendash2007 under geomagnetic quiet conditions (ap\ \<\ =12) ...

Yu, Tingting; Ren, Zhipeng; Yue, Xinan; Yu, You; Wan, Weixing;

YEAR: 2019     DOI: 10.1029/2018JA026229

2018

The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain

Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming

We present the results of complex obser-vationsof various parameters of the middle and upper atmosphere over Siberia in December 2012 \textendashJanuary 2013, during a major sudden stratospheric warming (SSW) event. We analyze variations in ozone concentra-tion from microwave measurements, in stratosphere and lower mesosphere temperatures from lidar and satellite measurements, in the F2-layer critical frequency (foF2), in the total electron content (TEC), as well as in the ra-tio of concentrations of atomic oxygen to mole ...

Ясюкевич, Анна; Yasyukevich, Anna; Клименко, Максим; Klimenko, Maksim; Куликов, Юрий; Kulikov, Yury; Клименко, Владимир; Klimenko, Vladimir; Бессараб, Федор; Bessarab, Fedor; Кореньков, Юрий; Korenkov, Yuriy; Маричев, Валерий; Marichev, Valery; Ратовский, Константин; Ratovsky, Konstantin; Колесник, Сергей; Kolesnik, Sergey;

YEAR: 2018     DOI: 10.12737/issue_5c1b83b913d443.7589563310.12737/szf-44201807

ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence

The International GNSS Service (IGS) has recently accepted for official release a new ionospheric product to characterize ionospheric irregularity and intensity as derived from multi-site ground-based GPS observations. This product was developed and implemented in the Space Radio-Diagnostic Research Center (SRRC), University of Warmia and Mazury. The SRRC has implemented this approach using in-house software for multi-step processing and interpretation of carrier phase delays in dual-frequency GPS signals and provides the ...

Cherniak, Iurii; Krankowski, Andrzej; Zakharenkova, Irina;

YEAR: 2018     DOI: 10.1007/s10291-018-0730-1

Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017?

In this study, multiple data sets from Beidou geostationary orbit satellites total electron contents (TECs), ionosonde, meteor radar, magnetometer, and model simulations have been used to investigate the ionospheric responses in the Asian-Australian sector during the September 2017 geomagnetic storm. It was found that long-duration daytime TEC enhancements that lasted from 7 to 12 September 2017 were observed by the Beidou geostationary orbit satellite constellation. This is a unique event as the prominent TEC enhancement ...

Lei, Jiuhou; Huang, Fuqing; Chen, Xuetao; Zhong, Jiahao; Ren, Dexin; Wang, Wenbin; Yue, Xinan; Luan, Xiaoli; Jia, Mingjiao; Dou, Xiankang; Hu, Lianhuan; Ning, Baiqi; Owolabi, Charles; Chen, Jinsong; Li, Guozhu; Xue, Xianghui;

YEAR: 2018     DOI: 10.1029/2017JA025166

Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22\textendash23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques

We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22\textendash23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were larg ...

Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; isson, Co; Hairston, M.; Coley, W.;

YEAR: 2018     DOI: 10.1002/jgra.v123.310.1002/2017JA024981

Features of High-Lat Ionospheric Irregularities Development as Revealed by Ground-Based GPS Observations, Satellite-Borne GPS Observations and Satellite In Situ Measurements over the Territory of Russia during the Geomagnetic Storm on March 17-18, 2015

The dynamic picture of the response of the high- and mid-latitude ionosphere to the strong geomagnetic disturbances on March 17-18, 2015, has been studied with ground-based and satellite observations, mainly, by transionospheric measurements of delays of GPS (Global Positioning System) signals. The advantages of the joint use of ground-based GPS measurements and GPS measurements on board of the Swarm Low-Earth-Orbit satellite mission for monitoring of the appearance of ionospheric irregularities over the territory of Russ ...

Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Klimenko, M.;

YEAR: 2018     DOI: 10.1134/S0016793217050176

Changes in the Stratosphere and Ionosphere Parameters During the 2013 Major Stratospheric Warming

The paper presents the results of the complex experiment (lidar and ozonometric observations), carried out during the period of the 2013 major sudden stratospheric warming (SSW) in the North Asia region. The data of this experiment were supplemented by the ionospheric parameters observations. We considered variations in the critical frequency and peak height of the ionospheric F2-layer (foF2) from ionosonde measurements in Tomsk and Irkutsk, as well as the behavior of the total electron content (TEC) based on the phase du ...

Yasyukevich, Anna; Kulikov, Yury; Klimenko, Maxim; Klimenko, Vladimir; Bessarab, Fedor; Korenkov, Yury; Marichev, Valery; Ratovsky, Konstantin; Kolesnik, Sergey;

YEAR: 2018     DOI: 10.23919/URSI-AT-RASC.2018.8471322

2016

Prompt penetration electric fields and the extreme topside ionospheric response to the June 22\textendash23, 2015 geomagnetic storm as seen by the Swarm constellation

Using data from the three Swarm satellites, we study the ionospheric response to the intense geomagnetic storm of June 22\textendash23, 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the second strongest geomagnetic storm in the current 24th solar cycle. A specific configuration of the Swarm satellites allowed investigation of the evolution of the storm-time ionospheric alterations on the day- and the nightside quasi-simultaneously. With the development of the main phase of the storm, a s ...

Astafyeva, Elvira; Zakharenkova, Irina; Alken, Patrick;

YEAR: 2016     DOI: 10.1186/s40623-016-0526-x

Long-term variations in the neutral gas composition of the thermosphere over Norilsk (2003\textendash2013)

Kushnarenko, Galina; Yakovleva, O.E.; Kuznetsova, G.M.;

YEAR: 2016     DOI: 10.12737/issue_58e1a5fe7dc198.3567233310.12737/21465

High-latitude ionospheric irregularities: differences between ground- and space-based GPS measurements during the 2015 St. Patrick\textquoterights Day storm

We present an analysis of ionospheric irregularities at high latitudes during the 2015 St. Patrick\textquoterights Day storm. Our study used measurements from\ ~2700 ground-based GPS stations and GPS receivers onboard five low earth orbit (LEO) satellites\textemdashSwarm A, B and C, GRACE and TerraSAR-X\textemdashthat had close orbit altitudes of\ ~500\ km, and the Swarm in situ plasma densities. An analysis of the rate of TEC index (ROTI) derived from LEO\textendashGPS data, together with Swarm in situ pla ...

Cherniak, Iurii; Zakharenkova, Irina;

YEAR: 2016     DOI: 10.1186/s40623-016-0506-1

2015

Dependence of the high-latitude plasma irregularities on the auroral activity indices: a case study of 17 March 2015 geomagnetic storm

The magnetosphere substorm plays a crucial role in the solar wind energy dissipation into the ionosphere. We report on the intensity of the high-latitude ionospheric irregularities during one of the largest storms of the current solar cycle\textemdashthe St. Patrick\textquoterights Day storm of 17 March 2015. The database of more than 2500 ground-based Global Positioning System (GPS) receivers was used to estimate the irregularities occurrence and dynamics over the auroral region of the Northern Hemisphere. We analyze the ...

Cherniak, Iurii; Zakharenkova, Irina;

YEAR: 2015     DOI: 10.1186/s40623-015-0316-x

Auroral hemispheric power index Auroral precipitation; geomagnetic storm; GPS; Ionosphere irregularities; ROTI

The August 2011 URSI World Day campaign: Initial results

During a 10-day URSI World Day observational campaign beginning on August 1, 2011, an isolated, major geomagnetic storm occurred. On August 5,\ Kp\ reached values of 8-and\ Dst\ dropped to -113\ nT. The occurrence of this isolated storm in the middle of a 10-day URSI World Day campaign provides and unprecedented opportunity to observe the coupling of solar wind energy into the magnetosphere and to evaluate the varied effects that occur in the coupled magnetosphere\text ...

Immel, Thomas; Liu, Guiping; England, Scott; Goncharenko, Larisa; Erickson, Philip; Lyashenko, Mykhaylo; Milla, Marco; Chau, Jorge; Frey, Harald; Mende, Stephen; Zhou, Qihou; Stromme, Anja; Paxton, Larry;

YEAR: 2015     DOI: 10.1016/j.jastp.2015.09.005

Aeronomy; Ionosphere; Radar; thermosphere

Ionospheric response to the 2015 St. Patrick\textquoterights Day storm: A global multi-instrumental overview

We present the first multi-instrumental results on the ionospheric response to the geomagnetic storm of 17\textendash18 March 2015 (the St. Patrick\textquoterights Day storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of -233 nT). The storm caused complex effects around the globe. The most dramatic positive ionospheric storm occurred at low latitudes in the morning (~100\textendash150\% enhancement) and postsunset (~80\textendash100\% enhancement) sectors. These significant vertical tota ...

Astafyeva, Elvira; Zakharenkova, Irina; Förster, Matthias;

YEAR: 2015     DOI: 10.1002/2015JA021629

geomagnetic storm; hemispheric asymmetry; Ionosphere; negative storm; positive storm; Swarm mission

Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick\textquoterights Day storm: Ground-based GPS measurements

We report first results on the study of the high-latitude ionospheric irregularities observed in worldwide GPS data during the St. Patrick\textquoterights Day geomagnetic storm (17 March 2015). Multisite GPS observations from more than 2500 ground-based GPS stations were used to analyze the dynamics of the ionospheric irregularities in the Northern and Southern Hemispheres. The most intense ionospheric irregularities lasted for more than 24 h starting at 07 UT of 17 March. This period correlates well with an increase of t ...

Cherniak, Iurii; Zakharenkova, Irina; Redmon, Robert;

YEAR: 2015     DOI: 10.1002/swe.v13.910.1002/2015SW001237

auroral precipitation; geomagnetic storm; Ionosphere; irregularities; rate of TEC

2014

E-region ionospheric storm on May 1\textendash3, 2010: GSM TIP model representation and suggestions for IRI improvement

his paper presents the model simulation results of ionospheric E-region parameters during geomagnetic storm on May 2\textendash3, 2010. For this investigation we used the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) developed in West Department of IZMIRAN. GSM TIP model simulations were performed using empirical model of high-energy electron precipitation. The temporal and spatial distributions of the lower ionosphere parameters and minor neutral species are presented. GSM TIP m ...

Bessarab, F.S.; Korenkov, Yu.N.; Klimenko, V.V.; Klimenko, M.V.; Zhang, Y.;

YEAR: 2014     DOI: 10.1016/j.asr.2014.08.003

E-region; Electric field; geomagnetic storm; Ionospheric modeling; IRI-2012; Nitric oxide density

The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results

We studied the contribution of the global plasmaspheric and ionospheric electron content (PEC and IEC) into total electron content (TEC). The experimental PEC was estimated by comparison of GPS TECobservations and FORMOSAT-3/COSMIC radio occultation IEC measurements. Results are retrieved for the winter solstice (January and December 2009) conditions. Global maps of COSMIC-derived IEC, PECand GPS TEC were compared with Global Self-consistent ...

Klimenko, M.V.; Klimenko, V.V.; Zakharenkova, I.E.; Cherniak, Iu.V.;

YEAR: 2014     DOI: 10.1016/j.asr.2014.06.027

FORMOSAT-3/COSMIC; GPS; Numerical modeling; Plasmasphere; total electron content

2013

East-west differences in F -region electron density at midlatitude: Evidence from the Far East region

The global configuration of the geomagnetic field shows that the maximum east-west difference in geomagnetic declination of northern middle latitude lies in the US region (~32\textdegree), which produces the significant ionospheric east-west coast difference in terms of total electron content first revealed by Zhang et al. (2011). For verification, it is valuable to investigate this feature over the Far East area, which also shows significant geomagnetic declination east-west gradient but smaller (~15\textdegree) than tha ...

Zhao, Biqiang; Wang, Min; Wang, Yungang; Ren, Zhipeng; Yue, Xinan; Zhu, Jie; Wan, Weixing; Ning, Baiqi; Liu, Jing; Xiong, Bo;

YEAR: 2013     DOI: 10.1029/2012JA018235

geomagnetic declination; longitudinal variation; midlatitude ionosphere

2012

A simulation study for the couplings between DE3 tide and longitudinal WN4 structure in the thermosphere and ionosphere

Wan, W.; Ren, Z.; Ding, F.; Xiong, J.; Liu, L.; Ning, B.; Zhao, B.; Li, G.; Zhang, M.-L.;

YEAR: 2012     DOI: 10.1016/j.jastp.2012.04.011

Equinoctial asymmetry in solar activity variations of NmF2 and TEC

Chen, Y.; Liu, L.; Wan, W.; Ren, Z.;

YEAR: 2012     DOI: 10.5194/angeo-30-613-2012

Ionospheric and thermospheric variations associated with prompt penetration electric fields

Lu, G.; Goncharenko, L.; Nicolls, M.; Maute, A.; Coster, A.; Paxton, L.;

YEAR: 2012     DOI: 10.1029/2012JA017769

Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle\textquoterights final launch

Stevens, Michael; Lossow, Stefan; Fiedler, Jens; Baumgarten, Gerd; übken, Franz-Josef; Hallgren, Kristofer; Hartogh, Paul; Randall, Cora; Lumpe, Jerry; Bailey, Scott; Niciejewski, R.; Meier, R.; Plane, John; Kochenash, Andrew; Murtagh, Donal; Englert, Christoph;

YEAR: 2012     DOI: 10.1029/2012JD017638

Modeling the effect of sudden stratospheric warming within the thermosphere\textendashionosphere system

This paper presents an investigation of thermospheric and ionospheric response to the sudden stratospheric warming (SSW) event, which took place in January 2009. This period was characterized by low solar and geomagnetic activity. Analysis was carried out within the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP). The experimental data of the atmospheric temperatures obtained by Aura satellite above Irkutsk and ionosonde data over Yakutsk and Irkutsk were utilized as well. SSW event wa ...

Bessarab, F.S.; Korenkov, Yu.N.; Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Ratovsky, K.G.; Chernigovskaya, M.A.;

YEAR: 2012     DOI: 10.1016/j.jastp.2012.09.005

Ionosphere; Modeling; sudden stratospheric warming; thermosphere

The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event

This paper presents a study of thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming (SSW) event. This period was characterized by low solar and geomagnetic activity. The study was performed using the Global Self-consistent Model of Thermosphere, Ionosphere, and Protonosphere (GSM TIP). Model results were compared with ionosonde data from Irkutsk, Kaliningrad, Sao Jose dos Campos, and Jicamarca. The SSW event was modeled by specifying the temperature and density perturbations at the lower b ...

Korenkov, Y.; Klimenko, V.; Klimenko, M.; Bessarab, F.; Korenkova, N.; Ratovsky, K.; Chernigovskaya, M.; Shcherbakov, A.; Sahai, Y.; Fagundes, P.; de Jesus, R.; de Abreu, A.; Condor, P.;

YEAR: 2012     DOI: 10.1029/2012JA018018

Electric field; Ionosphere; sudden stratospheric warming; thermosphere

The global thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming event

This paper presents a study of thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming (SSW) event. This period was characterized by low solar and geomagnetic activity. The study was performed using the Global Self-consistent Model of Thermosphere, Ionosphere, and Protonosphere (GSM TIP). Model results were compared with ionosonde data from Irkutsk, Kaliningrad, Sao Jose dos Campos, and Jicamarca. The SSW event was modeled by specifying the temperature and density perturbations at the lower b ...

Korenkov, Y.; Klimenko, V.; Klimenko, M.; Bessarab, F.; Korenkova, N.; Ratovsky, K.; Chernigovskaya, M.; Shcherbakov, A.; Sahai, Y.; Fagundes, P.; de Jesus, R.; de Abreu, A.; Condor, P.;

YEAR: 2012     DOI: 10.1029/2012JA018018

Electric field; Ionosphere; sudden stratospheric warming; thermosphere

Extreme Ultraviolet Variability Experiment (EVE) on~the~Solar Dynamics Observatory (SDO): Overview~of~Science Objectives, Instrument Design, Data~Products, and Model Developments

The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth\textquoterights upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (S ...

Woods, T.; Eparvier, F.; Hock, R.; Jones, A.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; McMullin, D.; Chamberlin, P.; Berthiaume, G.; Bailey, S.; Fuller-Rowell, T.; Sojka, J.; Tobiska, W.; Viereck, R.;

YEAR: 2012     DOI: 10.1007/s11207-009-9487-6

EVE; SDO; Solar EUV irradiance; Space weather research

2011

Electron concentration variations in the F1-region during magnetic storms in a low solar activity period

Polekh, N.; Kushnarenko, G.; Pirog, O.; Kolpakova, O.; Kuznetsova, G.;

YEAR: 2011     DOI: 10.1134/S0016793211080251

Ionospheric effects caused by the series of geomagnetic storms of September 9\textendash14, 2005

Klimenko, M.; Klimenko, V.; Ratovsky, K.; Goncharenko, L.;

YEAR: 2011     DOI: 10.1134/S0016793211030108

Latitudinal profile of UV nightglow and electron precipitations

Dmitriev, A.V.; Yeh, H.-C.; Panasyuk, M.I.; Galkin, V.I.; Garipov, G.K.; Khrenov, B.A.; Klimov, P.A.; Lazutin, L.L.; Myagkova, I.N.; Svertilov, S.I.;

YEAR: 2011     DOI: 10.1016/j.pss.2011.02.010

Estimated Relations Between Main Gas Components During Strong and Moderate Geomagnetic Disturbances Over A Period Of Decreasing and Minimum Solar Activity

Kushnarenko, G.; Kuznetsova, G.; Kolpakova, O.;

YEAR: 2011     DOI:

2010

Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide

Wan, W.; Xiong, J.; Ren, Z.; Liu, L.; Zhang, M.-L.; Ding, F.; Ning, B.; Zhao, B.; Yue, X.;

YEAR: 2010     DOI: 10.1029/2010JA015527

Is DE2 the source of the ionospheric wave number 3 longitudinal structure?

Kil, H.; Paxton, L.; Lee, W.; Ren, Z.; Oh, S.-J.; Kwak, Y.-S.;

YEAR: 2010     DOI: 10.1029/2010JA015979

Dynamic variability in F-region ionospheric composition at auroral arc boundaries

Zettergren, M.; Semeter, J.; Burnett, B.; Oliver, W.; Heinselman, C.; Blelly, P.-L.; Diaz, M.;

YEAR: 2010     DOI: 10.5194/angeo-28-651-2010

Program of transient UV event research at Tatiana-2 satellite

Garipov, G.; Khrenov, B.; Klimov, P.; Morozenko, V.; Panasyuk, M.; Petrova, S.; Tulupov, V.; Shahparonov, V.; Svertilov, S.; Vedenkin, N.; Yashin, I.; Jeon, J.; Jeong, S.; Jung, A.; Kim, J.; Lee, J.; . Y. Lee, H; Na, G.; Nam, J.; Nam, S.; Park, I.; Suh, J.; . Y. Jin, J; Kim, M.; Kim, Y.; Yoo, B.; Park, Y.-S.; Yu, H.; Lee, C.-H.; Park, J.; Salazar, H.; Martinez, O.; Ponce, E.; Cotsomi, J.;

YEAR: 2010     DOI: 10.1029/2009JA014765

Simulated wave number 4 structure in equatorial F -region vertical plasma drifts

Ren, Zhipeng; Wan, Weixing; Xiong, Jiangang; Liu, Libo;

YEAR: 2010     DOI: 10.1029/2009JA014746

2008

Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

Zhao, B; Wan, W; Liu, L; Mao, T; Ren, Z; Wang, M; Christensen, AB;

YEAR: 2008     DOI:

2007

Ionospheric disturbances during the severe magnetic storm of November 7\textendash10, 2004

Grigorenko, E.; Lysenko, V.; Pazyura, S.; Taran, V.; Chernogor, L.;

YEAR: 2007     DOI: 10.1134/S0016793207060059

A statistical analysis of longitudinal dependences of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP

Haüsler, K.; Lühr, H.; Rentz, S.; Köhler, W.;

YEAR: 2007     DOI: 10.1016/j.jastp.2007.04.004

Features of annual and semiannual variations derived from the global ionospheric maps of total electron content

Zhao, B.; Wan, W.; Liu, L.; Mao, T.; Ren, Z.; Wang, M.; Christensen, A.;

YEAR: 2007     DOI: 10.5194/angeo-25-2513-2007

Observations of a positive storm phase on September 10, 2005

In this study, we present multi-instrument observations of a strong positive phase of ionospheric storm, which occurred on September 10, 2005 during a moderate geomagnetic storm with minimum Dst=-60\ nT and maximum Kp=6\textendash. The daytime electron density measured by the Millstone Hill incoherent scatter radar (42.6\textdegreeN, 288.5\textdegreeE) increased after 13\ UT (\~8\ LT) compared with that before the storm. This increase is observed throughout the daytim ...

Goncharenko, L.P.; Foster, J.C.; Coster, A.J.; Huang, C.; Aponte, N.; Paxton, L.;

YEAR: 2007     DOI: 10.1016/j.jastp.2006.09.011

F-region; geomagnetic storm; Ionosphere; positive phase

2006

Large variations in the thermosphere and ionosphere during minor geomagnetic disturbances in April 2002 and their association with IMF B y

We investigate the variations in the thermosphere and ionosphere using multi-instrument observations during the April 2002 period, with a particular focus on periods during small geomagnetic disturbances. Large and long-lasting reductions in the daytime electron density were observed at midlatitudes by incoherent scatter radars, ionosondes, and GPS receivers. These reductions reached 30\textendash50\% and were observed over an extended longitudinal area. They propagated to middle latitudes (35\textendash40\textdegreeN) in ...

Goncharenko, L.; Salah, J.; Crowley, G.; Paxton, L.; Zhang, Y.; Coster, A.; Rideout, W.; Huang, C.; Zhang, S.; Reinisch, B.; Taran, V.;

YEAR: 2006     DOI: 10.1029/2004JA010683

Electron density; thermospheric composition; thermospheric wind

2005

October 2002 30-day incoherent scatter radar experiments at Millstone Hill and Svalbard and simultaneous GUVI/TIMED observations

A long-duration incoherent scatter radar (ISR) experiment was conducted at Millstone Hill and Svalbard from October 4\textendashNovember 4, 2002. Along with the simultaneous GUVI/TIMED neutral composition measurements, this 30-day run enabled us to study a number of thermosphere-ionosphere-magnetosphere phenomena. This paper focuses on the day-to-day variability and quasiperiodic oscillation of the ionosphere. The day-to-day variability under quiet magnetic conditions in electron density Ne, ion temperature Ti and electro ...

Zhang, Shun-Rong; Holt, John; Erickson, Phil; Lind, Frank; Foster, John; van Eyken, Anthony; Zhang, Yongliang; Paxton, Larry; Rideout, William; Goncharenko, Larisa; Campbell, Glenn;

YEAR: 2005     DOI: 10.1029/2004GL020732

2004

Retrievals of nighttime electron density from Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission Global Ultraviolet Imager (GUVI) measurements

In this work we will present a method for retrieving nighttime electron density profiles from OI 135.6 nm limb emissions measured by the Global Ultraviolet Imager (GUVI) aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission spacecraft. The primary mechanism for 135.6 nm radiance in the nighttime thermosphere is recombination of O+ ions, and the volume emission rate is approximately proportional to the square of the electron density. Herein we describe a two-step inversion method ...

DeMajistre, R.; Paxton, L.; Morrison, D.; Yee, J.-H.; Goncharenko, L.; Christensen, A.;

YEAR: 2004     DOI: 10.1029/2003JA010296

Electron density; inversion; low-latitude ionosphere; TIMED/GUVI



  1