Notice:
|
Found 21 entries in the Bibliography.
Showing entries from 1 through 21
2022 |
The results of the model estimate of the height of the lower limit of integration of the ratio of the concentrations of atomic oxygen and molecular nitrogen (n(O)/n(N2)) in the thermosphere according to observations using the Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics Global UltraViolet Imager (TIMED GUVI) method are presented. Klimenko, MV; Klimenko, VV; Yasyukevich, AS; Ratovsky, KG; Published by: Russian Journal of Physical Chemistry B Published on: YEAR: 2022   DOI: 10.1134/S1990793122030071 |
2021 |
The results of the study of the variability of the electron concentration in the ionosphere in January 2009 are presented. Variations in the electron density in the ionosphere above individual stations and in the global electron content are considered based on the observation data and the results of the model calculations. Comparison of the ionospheric variability obtained from the results of calculations using the models of the upper atmosphere (GSM TIP) and the entire atmosphere (EAGLE) showed that the atmospheric-ionosphe ... Klimenko, M.; Ratovsky, K.; Klimenko, V.; Bessarab, F.; Sukhodolov, T.; Rozanov, E.; Published by: Russian Journal of Physical Chemistry B Published on: sep YEAR: 2021   DOI: 10.1134/S1990793121050171 atmosphere; global electron abundance; Ionosphere; model of the entire atmosphere; neutral composition of the upper atmosphere; sudden stratospheric warming |
We investigate the influence of 27-day variations in solar activity related to the rotation of the Sun around its axis on the thermosphere–ionosphere system at different latitudes and heights, using the results of the calculations of the model of the Earth’s upper atmosphere. Based on the results of the model calculations, related processes in the thermosphere–ionosphere system were analyzed in the period from June 20 to July 21, 2014. There is a clear reaction to the daytime electron concentration Ne in the ionosphere ... Klimenko, M.; Klimenko, V.; Ratovsky, K.; Yasyukevich, A.; Published by: Russian Journal of Physical Chemistry B Published on: may YEAR: 2021   DOI: 10.1134/S1990793121030052 Ionosphere; global electron content; neutral composition of the thermosphere; solar activity |
We present a joint analysis of longitude-temporal variations of ionospheric and geomagnetic parameters at middle and high latitudes in the Northern Hemisphere during the two severe magnetic storms in March and June 2015 by using data from the chains of magnetometers, ionosondes and GPS/GLONASS receivers. We identify the fixed longitudinal zones where the variability of the magnetic field is consistently high or low under quiet and disturbed geomagnetic conditions. The revealed longitudinal structure of the geomagnetic field ... Chernigovskaya, M.; Shpynev, B.; Yasyukevich, A.; Khabituev, D.; Ratovsky, K.; Belinskaya, Yu.; Stepanov, A.; Bychkov, V.; Grigorieva, S.; Panchenko, V.; Kouba, D.; Mielich, J.; Published by: Advances in Space Research Published on: jan YEAR: 2021   DOI: 10.1016/j.asr.2020.10.028 Chain of GPS/GLONASS receivers; Geomagnetic field variations; geomagnetic storm; Ionosonde chain; ionospheric disturbances |
2019 |
Klimenko, MV; Ratovsky, KG; Themens, D; Yasukevich, AS; Klimenko, VV; Published by: Published on: |
2018 |
Shpynev, B.G.; Zolotukhina, N.A.; Polekh, N.M.; Ratovsky, K.G.; Chernigovskaya, M.A.; Belinskaya, A.Yu.; Stepanov, A.E.; Bychkov, V.V.; Grigorieva, S.A.; Panchenko, V.A.; Korenkova, N.A.; Mielich, J.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 11/2018 YEAR: 2018   DOI: 10.1016/j.jastp.2017.10.014 |
We present the results of complex obser-vationsof various parameters of the middle and upper atmosphere over Siberia in December 2012 \textendashJanuary 2013, during a major sudden stratospheric warming (SSW) event. We analyze variations in ozone concentra-tion from microwave measurements, in stratosphere and lower mesosphere temperatures from lidar and satellite measurements, in the F2-layer critical frequency (foF2), in the total electron content (TEC), as well as in the ra-tio of concentrations of atomic oxygen to mole ... Ясюкевич, Анна; Yasyukevich, Anna; Клименко, Максим; Klimenko, Maksim; Куликов, Юрий; Kulikov, Yury; Клименко, Владимир; Klimenko, Vladimir; Бессараб, Федор; Bessarab, Fedor; Кореньков, Юрий; Korenkov, Yuriy; Маричев, Валерий; Marichev, Valery; Ратовский, Константин; Ratovsky, Konstantin; Колесник, Сергей; Kolesnik, Sergey; Published by: Solnechno-Zemnaya Fizika Published on: 08/2018 YEAR: 2018   DOI: 10.12737/issue_5c1b83b913d443.7589563310.12737/szf-44201807 |
Winter anomaly in NmF2 and TEC: when and where it can occur
Yasyukevich, Yury; Yasyukevich, Anna; Ratovsky, Konstantin; Klimenko, Maxim; Klimenko, Vladimir; Chirik, Nikolay; Published by: Journal of Space Weather and Space Climate Published on: |
Changes in the Stratosphere and Ionosphere Parameters During the 2013 Major Stratospheric Warming The paper presents the results of the complex experiment (lidar and ozonometric observations), carried out during the period of the 2013 major sudden stratospheric warming (SSW) in the North Asia region. The data of this experiment were supplemented by the ionospheric parameters observations. We considered variations in the critical frequency and peak height of the ionospheric F2-layer (foF2) from ionosonde measurements in Tomsk and Irkutsk, as well as the behavior of the total electron content (TEC) based on the phase du ... Yasyukevich, Anna; Kulikov, Yury; Klimenko, Maxim; Klimenko, Vladimir; Bessarab, Fedor; Korenkov, Yury; Marichev, Valery; Ratovsky, Konstantin; Kolesnik, Sergey; Published by: Published on: YEAR: 2018   DOI: 10.23919/URSI-AT-RASC.2018.8471322 |
2017 |
We present a comparative analysis of first principles Global Self‐consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) in prediction of ionospheric Dmitriev, AV; Suvorova, AV; Klimenko, MV; Klimenko, VV; Ratovsky, KG; Rakhmatulin, RA; Parkhomov, VA; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2017   DOI: 10.1002/2016JA023260 |
Shpynev, BG; Zolotukhina, NA; Polekh, NM; Chernigovskaya, MA; Ratovsky, KG; Belinskaya, Yu; Stepanov, AE; Bychkov, VV; Grigorieva, SA; Panchenko, VA; , others; Published by: Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa Published on: |
2015 |
This paper analyses the geomagnetic storm on September 26–29, 2011. We compare the calculation results obtained using the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) and IRI-2012 (Bilitza et al., 2014) model with ground-based ionosonde data of stations at different latitudes and longitudes. We examined physical mechanisms responsible for the formation of ionospheric effects during the main phase of geomagnetic storm that occurred at the rising phase of the 24th solar cycle. We u ... Kotova, D.S.; Klimenko, M.V.; Klimenko, V.V.; Zakharov, V.E.; Ratovsky, K.G.; Nosikov, I.A.; Zhao, B.; Published by: Advances in Space Research Published on: YEAR: 2015   DOI: 10.1016/j.asr.2015.05.009 HF radio wave propagation model; IRI model; First principles model; ionosonde; 3 layer; geomagnetic storm |
2013 |
A study of the response of the thermosphere and ionosphere to sudden stratospheric warmings (SSWs) which occurred in January of 2008 and 2009 is presented. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) developed in the West Department of IZMIRAN was a theoretical basis for this study. A comparison of the simulation results of the thermosphere-ionosphere response to SSW events with the observational data over Irkutsk and also with theoretical and experimental studies carried ... Klimenko, M.; Klimenko, V.; textquoterightkov, Yu.; Bessarab, F.; Karpov, I.; Ratovsky, K.; Chernigovskaya, M.; Published by: Cosmic Research Published on: 01/2013 YEAR: 2013   DOI: 10.1134/S001095251301005X |
Published by: Space Research Published on: |
2012 |
Modeling the effect of sudden stratospheric warming within the thermosphere--ionosphere system This paper presents an investigation of thermospheric and ionospheric response to the sudden stratospheric warming (SSW) event, which took place in January 2009. This period was characterized by low solar and geomagnetic activity. Analysis was carried out within the Global Self-consistent Model of Thermosphere, Ionosphere and Protonosphere (GSM TIP). The experimental data of the atmospheric temperatures obtained by Aura satellite above Irkutsk and ionosonde data over Yakutsk and Irkutsk were utilized as well. SSW event wa ... Bessarab, F.S.; Korenkov, Yu.N.; Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Ratovsky, K.G.; Chernigovskaya, M.A.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 12/2012 YEAR: 2012   DOI: 10.1016/j.jastp.2012.09.005 Ionosphere; Modeling; sudden stratospheric warming; thermosphere |
This paper presents a study of thermospheric and ionospheric response to the 2008 minor sudden stratospheric warming (SSW) event. This period was characterized by low solar and geomagnetic activity. The study was performed using the Global Self-consistent Model of Thermosphere, Ionosphere, and Protonosphere (GSM TIP). Model results were compared with ionosonde data from Irkutsk, Kaliningrad, Sao Jose dos Campos, and Jicamarca. The SSW event was modeled by specifying the temperature and density perturbations at the lower b ... Korenkov, Y.; Klimenko, V.; Klimenko, M.; Bessarab, F.; Korenkova, N.; Ratovsky, K.; Chernigovskaya, M.; Shcherbakov, A.; Sahai, Y.; Fagundes, P.; de Jesus, R.; de Abreu, A.; Condor, P.; Published by: Journal of Geophysical Research Published on: 10/2012 YEAR: 2012   DOI: 10.1029/2012JA018018 Electric field; Ionosphere; sudden stratospheric warming; thermosphere |
2011 |
Ionospheric effects caused by the series of geomagnetic storms of September 9--14, 2005
Klimenko, M.; Klimenko, V.; Ratovsky, K.; Goncharenko, L.; Published by: Geomagnetism and Aeronomy Published on: Jan-06-2011 YEAR: 2011   DOI: 10.1134/S0016793211030108 |
In this paper, we use the modified GSM TIP model to explore how the thermosphere–ionosphere system in the American longitudinal sector responded to the series of geomagnetic storms on September 9–14, 2005. Comparison of modeling results with experimental data at Millstone Hill, USA (42.6°N, 71.5°W), Ramey, Puerto Rico (18.3°N, 66.8°W) and Jicamarca, Peru (11.9°S, 76.9°W) has shown a good agreement of ionospheric disturbances in the F-region maximum height. We examine in detail the formation mechanisms of these dist ... Klimenko, M.V.; Klimenko, V.V.; Ratovsky, K.G.; Goncharenko, L.P.; Published by: Advances in Space Research Published on: YEAR: 2011   DOI: https://doi.org/10.1016/j.asr.2011.06.002 geomagnetic storm; Ionospheric modeling; F-region maximum height; Electric field; F3-layer; Thermospheric wind surge |
This study presents the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) numerical simulations of the 9–14 September 2005 geomagnetic Klimenko, MV; Klimenko, VV; Ratovsky, KG; Goncharenko, LP; Sahai, Y; Fagundes, PR; De Jesus, R; De Abreu, AJ; Vesnin, AM; Published by: Radio Science Published on: |
2010 |
Klimenko, Maxim; Klimenko, Vladimir; Ratovsky, Konstantin; Goncharenko, Larisa; Published by: 38th COSPAR Scientific Assembly Published on: |
In the given research it is presented the numerical calculation results of ionospheric parameters during sequence of geomagnetic storms on September 9–14, 2005. The calculations were executed with use of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), developed in WD IZMIRAN. The potential difference through polar caps (PDPC) and field-aligned currents of the second region (FAC2) were set as function of Kp-index. Thus, the time delay of the FAC2 variations relative to the PDPC ... Klimenko, MV; Klimenko, VV; Ratovsky, KG; Goncharenko, LP; Published by: Physics of Auroral Phenomena Published on: |
1