GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2016

SSUSI-lite: next generation far-ultraviolet sensor for characterizing geospace

Paxton, Larry; Hicks, John; Grey, Matthew; Parker, Charles; Hourani, Ramsay; Marcotte, Kathryn; Carlsson, Uno; Kerem, Samuel; Osterman, Steven; Maas, Bryan; , others;

Published by:       Published on:

YEAR: 2016     DOI:

2015

SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing

SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number ...

Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry;

Published by:       Published on:

YEAR: 2015     DOI: 10.1117/12.2191701

2008

Validation of the Plasma Densities and Temperatures From the ISS Floating Potential Measurement Unit

The validation of the floating potential measurement unit (FPMU) plasma density and temperature measurements is an important step in the process of evaluating International Space Station (ISS) spacecraft charging issues including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on the Space Station are due to the combined Vsp times B effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160-V U.S. solar array modules. The ionospher ...

Coffey, Victoria; Wright, Kenneth; Minow, Joseph; Schneider, Todd; Vaughn, Jason; Craven, Paul; Chandler, Michael; Koontz, Steven; Parker, Linda; Bui, Them;

Published by: IEEE Transactions on Plasma Science      Published on: Oct

YEAR: 2008     DOI: 10.1109/TPS.2008.2004271

In-situ observations of the Ionospheric F2-Region from the International Space Station

The International Space Station orbit provides an ideal platform for in-situ studies of space weather effects on the mid and low latitude F-2 region ionosphere. The Floating Potential Measurement Unit (FPMU) operating on the ISS since Aug 2006, is a suite of plasma instruments: a Floating Potential Probe (FPP), a Plasma Impedance Probe (PIP), a Wide-sweep Langmuir Probe (WLP), and a Narrow-sweep Langmuir Probe (NLP). This instrument package provides a new opportunity for collaborative multi-instrument studies of the F-region ...

Coffey, Victoria; Wright, Kenneth; Minow, Joseph; Chandler, Michael; Parker, Linda;

Published by:       Published on:

YEAR: 2008     DOI:

2007

Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environmen ...

Coffey, V.; Minow, J.; Schneider, T.; Vaughn, J.; Craven, P.; Parker, L.; Bui, T.; Wright, K.; Koontz, S.;

Published by:       Published on: 06/2007

YEAR: 2007     DOI:



  1