Notice:
|
Found 624 entries in the Bibliography.
Showing entries from 1 through 50
2022 |
An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthap ... Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.018 |
An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthap ... Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.018 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
The control of magnetic disturbance induced seed perturbations on the daily variation in night-time ionization irregularity occurrence is studied using ionosonde data and TIMED/GUVI neutral density data at the magnetic equatorial region, Trivandrum. The study reveals that there is a requisite threshold seed amplitude for ESF to occur at a particular altitude and this requisite seed increases as the altitude decreases. This dependence of requisite seed perturbation on altitude for multiple years, which incorporates the electr ... Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.11.038 Equatorial ionosphere; Equatorial Spread F; Geomagnetically disturbed period; neutral density |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, Canberra (45.65° S, 226.30° E), in the Australian Region, by analyzing the storm–time variations in the critical frequency of the F2-region (foF2). Out of six storms, a storm of 23–24 April did not produce any ionospheric effe ... Published by: Atmosphere Published on: mar YEAR: 2022   DOI: 10.3390/atmos13030480 Geomagnetic storms; \textbfE × \textbfB drifts; disturbance dynamo electric fields; prompt penetrating electric fields; storm-induced circulation |
The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, Canberra (45.65° S, 226.30° E), in the Australian Region, by analyzing the storm–time variations in the critical frequency of the F2-region (foF2). Out of six storms, a storm of 23–24 April did not produce any ionospheric effe ... Published by: Atmosphere Published on: mar YEAR: 2022   DOI: 10.3390/atmos13030480 Geomagnetic storms; \textbfE × \textbfB drifts; disturbance dynamo electric fields; prompt penetrating electric fields; storm-induced circulation |
This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ... Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.; Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.12.027 geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
Contribution of the lower atmosphere to the day-to-day variation of thermospheric density In this paper we carried out a numerical experiment using the Specified Dynamics mode of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). One SD-WACCM-X run was with realistic Kp and F10.7 and the other with constant Kp and F10.7. By comparing the day-to-day variability of thermosphere mass density at 300 km (low earth orbit, LEO) and 120 km (reentry level) in these two runs, we find that the density variation at 300 km is mainly driven by geomagnetic and solar forcing ... Yue, Jia; Yu, Wandi; Pedatella, Nick; Bruinsma, Sean; Wang, Ningchao; Liu, Huixin; Published by: Advances in Space Research Published on: jun YEAR: 2022   DOI: 10.1016/j.asr.2022.06.011 |
We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effec ... Younas, Waqar; Amory-Mazaudier, C.; Khan, Majid; Amaechi, Paul; Published by: Advances in Space Research Published on: jul YEAR: 2022   DOI: 10.1016/j.asr.2022.07.029 annual variation; global electron content; Ionosphere; semi-annual variation; total electron content |
We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effec ... Younas, Waqar; Amory-Mazaudier, C.; Khan, Majid; Amaechi, Paul; Published by: Advances in Space Research Published on: jul YEAR: 2022   DOI: 10.1016/j.asr.2022.07.029 annual variation; global electron content; Ionosphere; semi-annual variation; total electron content |
We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. It is found that the mid-latitudes region has exhibited a large decrease in ∑O/N2 during all the phases of the storms under consideration, which corresponds well to the observed negative storm effects. This decrea ... Younas, Waqar; Khan, Majid; Amory-Mazaudier, C.; Amaechi, Paul; Fleury, R.; Published by: Advances in Space Research Published on: jan YEAR: 2022   DOI: 10.1016/j.asr.2021.10.027 CTIPe model; Disturbed ∑O/N; GUVI/TIMED data; Hemispheric asymmetries; REC |
We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. It is found that the mid-latitudes region has exhibited a large decrease in ∑O/N2 during all the phases of the storms under consideration, which corresponds well to the observed negative storm effects. This decrea ... Younas, Waqar; Khan, Majid; Amory-Mazaudier, C.; Amaechi, Paul; Fleury, R.; Published by: Advances in Space Research Published on: jan YEAR: 2022   DOI: 10.1016/j.asr.2021.10.027 CTIPe model; Disturbed ∑O/N; GUVI/TIMED data; Hemispheric asymmetries; REC |
This paper studies the response of the ionospheric parameters critical frequency (foF2), their height (hmF2), and Total Electron Content (TEC) at mid, low, and near-equatorial latitudes of the South American sector during the intense geomagnetic storm of 26 August 2018. The ionospheric response at the beginning of the main phase was different depending on latitude (in general, there were decreases in foF2 at near-equatorial and low latitudes and small increases at mid-latitudes). During the recovery, positive storm effects i ... Mansilla, Gustavo; Zossi, Marta; Published by: Advances in Space Research Published on: jan YEAR: 2022   DOI: 10.1016/j.asr.2021.08.002 |
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 ... Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi; Published by: Remote Sensing Published on: jan YEAR: 2022   DOI: 10.3390/rs14030652 space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents |
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 ... Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi; Published by: Remote Sensing Published on: jan YEAR: 2022   DOI: 10.3390/rs14030652 space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents |
Line-of-sight integration of emissions from planetary and cometary atmospheres is the Abel transform of the emission rate, under the spherical symmetry assumption. Indefinite integrals constructed from the Abel transform integral are useful for implementing remote sensing data analysis methods, such as the numerical inverse Abel transform. We propose analytical expressions obtained by a suitable, non-alternating, series development to compute those indefinite integrals. We establish expressions allowing absolute accuracy con ... Hubert, B.; Munhoven, G.; Moulane, Y.; Hutsemekers, D.; Manfroid, J.; Opitom, C.; Jehin, E.; Published by: Icarus Published on: jan YEAR: 2022   DOI: 10.1016/j.icarus.2021.114654 Abel transform; Aeronomy; Coma; Cometary atmospheres; Comets; Data reduction techniques; Planetary atmospheres. |
Ionospheric response of St. Patrick’s Day geomagnetic storm over Indian low latitude regions The current work shows the ionospheric response to an intense geomagnetic storm known as St. Patrick’s Day storm which occurred from 17-22 March 2015 using the ionospheric Chaurasiya, Sunil; Patel, Kalpana; Kumar, Sanjay; Singh, Abhay; Published by: Astrophysics and Space Science Published on: YEAR: 2022   DOI: 10.1007/s10509-022-04137-3 |
We present the ionospheric response of geomagnetic storms as observed from ionospheric Total Electron Content (TEC). We select nine storm events and study the GPS-TEC profiles Kundu, Subrata; Sasmal, Sudipta; Published by: Published on: YEAR: 2022   DOI: 10.21203/rs.3.rs-1652015/v1 |
During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in eg, the dynamics, composition Maute, Astrid; Lu, Gang; Knipp, Delores; Anderson, Brian; Vines, Sarah; Published by: Frontiers in Astronomy and Space Sciences Published on: YEAR: 2022   DOI: 10.3389/fspas.2022.932748 |
Soft x-ray radiation from the sun is responsible for the production of high energy photoelectrons in the D and E regions of the ionosphere, where they deposit most of their ionization Samaddar, Srimoyee; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott; , others; Published by: arXiv preprint arXiv:2209.11185 Published on: YEAR: 2022   DOI: 10.48550/arXiv.2209.11185 |
Soft x-ray radiation from the sun is responsible for the production of high energy photoelectrons in the D and E regions of the ionosphere, where they deposit most of their ionization Samaddar, Srimoyee; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott; , others; Published by: arXiv preprint arXiv:2209.11185 Published on: YEAR: 2022   DOI: 10.48550/arXiv.2209.11185 |
The 15 January 2022 Hunga Tonga Eruption History as Inferred From Ionospheric Observations On 15 January 2022, the Hunga Tonga-Hunga Ha’apai submarine volcano erupted violently and triggered a giant atmospheric shock wave and tsunami. The exact mechanism of this extraordinary eruptive event, its size and magnitude are not well understood yet. In this work, we analyze data from the nearest ground-based receivers of Global Navigation Satellite System to explore the ionospheric total electron content (TEC) response to this event. We show that the ionospheric response consists of a giant TEC increase followed by a s ... Astafyeva, E.; Maletckii, B.; Mikesell, T.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L.; Published by: Geophysical Research Letters Published on: YEAR: 2022   DOI: 10.1029/2022GL098827 co-volcanic ionospheric disturbances; eruption timeline; GNSS; Hunga Tonga eruption; Ionosphere; ionospheric geodesy |
The 15 January 2022 Hunga Tonga Eruption History as Inferred From Ionospheric Observations On 15 January 2022, the Hunga Tonga-Hunga Ha’apai submarine volcano erupted violently and triggered a giant atmospheric shock wave and tsunami. The exact mechanism of this extraordinary eruptive event, its size and magnitude are not well understood yet. In this work, we analyze data from the nearest ground-based receivers of Global Navigation Satellite System to explore the ionospheric total electron content (TEC) response to this event. We show that the ionospheric response consists of a giant TEC increase followed by a s ... Astafyeva, E.; Maletckii, B.; Mikesell, T.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L.; Published by: Geophysical Research Letters Published on: YEAR: 2022   DOI: 10.1029/2022GL098827 co-volcanic ionospheric disturbances; eruption timeline; GNSS; Hunga Tonga eruption; Ionosphere; ionospheric geodesy |
Disappearance of the Polar Cap Ionosphere During Geomagnetic Storm on 11 May 2019 Multi-instrument data from Jang Bogo Station (JBS) in Antarctica were utilized to study ionospheric responses to the 11 May 2019 moderate geomagnetic storm. These include Vertical Incident Pulsed Ionospheric Radar (VIPIR)/Dynasonde, Fabry-Perot Interferometer (FPI), GPS vertical total electron content (vTEC), and magnetometer. The VIPIR/Dynasonde observed long-lasting (\textgreater11 hr) severe depletion of the electron density in the F-region ionosphere over JBS. During the depletion interval, GPS TEC also correspondingly d ... Kwon, H.-J.; Kim, K.-H.; Jee, G.; Seon, J.; Lee, C.; Ham, Y.-B.; Hong, J.; Kim, E.; Bullett, T.; Auster, H.-U.; Magnes, W.; Kraft, S.; Published by: Space Weather Published on: YEAR: 2022   DOI: 10.1029/2022SW003054 |
The latitudinal and temporal variation of atomic oxygen (O) is opposite between the empirical model, NRLMSISE-00 (MSIS) and the whole atmosphere model, whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X) at 97–100 km. Atomic Oxygen from WACCM-X has maxima at solstices and summer mid-high latitudes, similar to [O] from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We use the densities and dynamics from WACCM-X to drive the Global Ionosphere Thermosphere Mod ... Malhotra, Garima; Ridley, Aaron; , Jones; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2021JA029320 global ionosphere thermosphere modeling; semiannual oscillation; thermospheric and ionospheric SAO; thermospheric spoon mechanism; vertical coupling of thermosphere with lower atmosphere; whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X) |
Far ultraviolet (FUV) imaging of the aurora from space provides great insight into the dynamic coupling of the atmosphere, ionosphere, and magnetosphere on global scales. To gain a quantitative understanding of these coupling processes, the global distribution of auroral energy flux is required, but the inversion of FUV emission to derive precipitating auroral particles energy flux is not straightforward. Furthermore, the spatial coverage of FUV imaging from Low Earth Orbit (LEO) altitudes is often insufficient to achieve g ... Li, J.; Matsuo, T.; Kilcommons, L.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2021JA029739 |
Sounding Rocket Observation of Nitric Oxide in the Polar Night An altitude profile of Nitric Oxide (NO) in the 80–110 km altitude range was measured in the polar night from a sounding rocket on 27 January 2020. The observations were made using the technique of stellar occultation with a UV spectrograph observing the γ (1,0) band of NO near 215 nm. The tangent point for the altitude profile was at 74° latitude, a location that had been in darkness for 80 days. The retrieved slant column density profile is interpreted using an assumed four-parameter analytic profile shape. Retrievals ... Bailey, Scott; McClintock, William; Carstens, Justin; Thurairajah, Brentha; Das, Saswati; Randall, Cora; Harvey, Lynn; Siskind, David; Stevens, Michael; Venkataramani, Karthik; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2021JA030257 Lower thermosphere; mesosphere; nitric oxide; polar night; sounding rocket; stellar occultation |
The Terrestrial Magnetospheric Response to the 28th October 2021 CME
Waters, James; Jackman, Caitriona; Whiter, Daniel; Fogg, Alexandra; Lamy, Laurent; Carter, Jennifer; Fryer, Laura; Louis, Corentin; Carley, Eion; Briand, Carine; , others; Published by: Published on: |
We use the in-situ observations of DMSP and SWARM satellites to report the changes of the topside ionospheric electron temperature during the October 2016 storm. Electron temperature in the afternoon sector dramatically increases in low latitudes in the recovery phase of the storm. Furthermore, the temperature enhancements have an obvious dependence on longitude and are mainly centralized around 100°–150°E in different satellite observations. The temperature enhancements attain more than 2,000 K at 840 km and 1,500 K at ... Zhang, Ruilong; Liu, Libo; Ma, Han; Chen, Yiding; Le, Huijun; Yoshikawa, Akimasa; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2022JA030278 electron temperature; equatorial topisde; Ionospheric storm; vertical drift |
Ionospheric Disturbances and Irregularities during the 25--26 August 2018 Geomagnetic Storm We use ground-based (GNSS, SuperDARN, and ionosondes) and space-borne (Swarm, CSES, and DMSP) instruments to study ionospheric disturbances due to the 25–26 August 2018 geomagnetic storm. The strongest large-scale storm-time enhancements were detected over the Asian and Pacific regions during the main and early recovery phases of the storm. In the American sector, there occurred the most complex effects caused by the action of multiple drivers. At the beginning of the storm, a large positive disturbance occurred over North ... Astafyeva, E.; Yasyukevich, Y.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.; Syrovatskii, S.; Guendouz, N.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2021JA029843 Geomagnetic storms; Ionosphere; ROTI; ionospheric disturbances; ionospheric irregularities; multi-instrumental approach |
This study presents multi-instrument observations of persistent large-scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady-state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry–Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 1 ... Bossert, Katrina; Paxton, Larry; Matsuo, Tomoko; Goncharenko, Larisa; Kumari, Komal; Conde, Mark; Published by: Geophysical Research Letters Published on: YEAR: 2022   DOI: 10.1029/2022GL099901 |
This study presents multi-instrument observations of persistent large-scale traveling ionosphere/atmospheric disturbances (LSTIDs/LSTADs) observed during moderately increased auroral electrojet activity and a sudden stratospheric warming in the polar winter hemisphere. The Global Ultraviolet Imager (GUVI), Gravity field and steady-state Ocean Circulation Explorer, Scanning Doppler Imaging Fabry–Perot Interferometers, and the Poker Flat Incoherent Scatter Radar are used to demonstrate the presence of LSTIDs/LSTADs between 1 ... Bossert, Katrina; Paxton, Larry; Matsuo, Tomoko; Goncharenko, Larisa; Kumari, Komal; Conde, Mark; Published by: Geophysical Research Letters Published on: YEAR: 2022   DOI: 10.1029/2022GL099901 |
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late Octo ... Ranjan, Alok; Krishna, MV; Kumar, Akash; Sarkhel, Sumanta; Bharti, Gaurav; Bender, Stefan; Sinnhuber, Miriam; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2022.07.035 |
Climatology of O/N2 Variations at Low-and Mid-Latitudes during Solar Cycles 23 and 24 We present a study concerning the thermospheric O/N2 variations for the period 2002 to 2020, using the measurements of global ultraviolet imager (GUVI) onboard TIMED satellite. In this regard, monthly averaged O/N2 was computed—using the five quietest days of the month—at low- and mid-latitudes. To find the longitudinal dependence of thermospheric variations, the analysis is further extended to different longitudinal sectors, namely Asia, Africa, and America. We found that the latitudinal and longitudinal O/N2 variations ... Khan, Jahanzeb; Younas, Waqar; Khan, Majid; Amory-Mazaudier, Christine; Published by: Atmosphere Published on: YEAR: 2022   DOI: 10.3390/atmos13101645 |
This study presents ionospheric responses of the mid and low-latitude region in the Europe-African longitude sector (along 30 +/- 10 deg E) to the intense geomagnetic storm of 23–31 August 2018 (SYM-Hmin = −207 nT) using the Global Ionospheric Map (GIM) and Global Positioning System (GPS) receivers data, the satellite data (SWARM, Defense Meteorological Satellite Program (DMSP), Global Ultraviolet Imager on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (GUVI/TIMED)), and Prompt Penetration Equato ... Dugassa, Teshome; Mezgebe, Nigussie; Habarulema, John; Habyarimana, Valence; Oljira, Asebe; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2022.10.063 |
This study presents ionospheric responses of the mid and low-latitude region in the Europe-African longitude sector (along 30 +/- 10 deg E) to the intense geomagnetic storm of 23–31 August 2018 (SYM-Hmin = −207 nT) using the Global Ionospheric Map (GIM) and Global Positioning System (GPS) receivers data, the satellite data (SWARM, Defense Meteorological Satellite Program (DMSP), Global Ultraviolet Imager on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (GUVI/TIMED)), and Prompt Penetration Equato ... Dugassa, Teshome; Mezgebe, Nigussie; Habarulema, John; Habyarimana, Valence; Oljira, Asebe; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2022.10.063 |
The thermospheric O/N2 ratio obtained from the TIMED/GUVI instrument for TIMED/GUVI observations of the O/N The authors ack nowledge the Global Ultraviolet Imager (GUVI) for the Reznychenko, M; Bogomaz, O; Kotov, D; Zhivolup, T; Koloskov, O; , Lisachenko; Published by: Ukrainian Antarctic Journal Published on: YEAR: 2022   DOI: 10.33275/1727-7485.1.2022.686 |
In this article, we analyze vertical total electron content (VTEC) over Nepal for 4 periods: March 14–25, 2015, June 18–29, 2015, May 24–June 4, 2017, and September 3–14, 2017. In each period, there are quiet geomagnetic days and intense geomagnetic stormy days. The VTEC observed during these periods has observed both positive and negative ionospheric storms. We compared VTEC Receiver-Independent Exchange Format (RINEX) observations with the Global Ionospheric Map (GIM), Centre for Orbit Determination in Europe (CODE ... Pandit, D; Amory-Mazaudier, Christine; Fleury, R; Chapagain, NP; Adhikari, B; Published by: Indian Journal of Physics Published on: YEAR: 2022   DOI: 10.1007/s12648-022-02441-w |
We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. Younas, Waqar; Khan, Majid; Amory-Mazaudier, C; Amaechi, Paul; Fleury, R; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2021.10.027 |
We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. Younas, Waqar; Khan, Majid; Amory-Mazaudier, C; Amaechi, Paul; Fleury, R; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2021.10.027 |