Notice:
|
Found 17 entries in the Bibliography.
Showing entries from 1 through 17
2018 |
Verkhoglyadova, Olga; Mlynczak, MG; Mannucci, Anthony; Paxton, Larry; Hunt, Linda; Komjathy, Attila; Published by: 42nd COSPAR Scientific Assembly Published on: |
2017 |
We revisit three complex superstorms of 19\textendash20 November 2003, 7\textendash8 November 2004, and 9\textendash11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and colloca ... Verkhoglyadova, O.; Komjathy, A.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/jgra.v122.1010.1002/2017JA024542 |
We present a multiinstrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time index that year. The geomagnetic storm was the result of two powerful Earth-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar cap. We employed global navigation satellite system (GNSS) networks, geomagnetic obs ... Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard; Published by: Radio Science Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016RS006106 |
The main focus of this dissertation is the study of the physical processes in the northern high-latitude (or simply Arctic) ionosphere. In addition to the main focus, two further studies are also presented regarding midlatitude ionosphere and neutral atmospheric simulations and observations. This section presents some basic background and the motivation behind these research topics. Durgonics, Tibor; H\oeg, P; Olsen, N; Coster, AJ; Wintoft, P; Komjathy, A; von Benzon, H; Published by: Published on: |
Verkhoglyadova, Olga; Komjathy, Attila; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Paxton, Larry; Published by: Published on: |
2016 |
We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)-driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74\textendash79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere-thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low-latitude and northern middle-latitude ... Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.; Komjathy, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.910.1002/2016JA022883 |
Heliosphere-ionosphere-thermosphere coupling and energy budget in geomagnetic storms 1. Solar irradiance: F10. 7 2. High-latitude electric and magnetic field potential patterns and field-aligned currents (FAC): empirical Weimer05 model (Weimer, 2005), can use AMIE input Verkhoglyadova, OP; Mannucci, AJ; Meng, X; Komjathy, A; Mlynczak, MG; Hunt, LA; Tsurutani, BT; Published by: Published on: |
Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Hoeg, Per; Paul, Ashik; Published by: Published on: |
Multi-Instrument Observations of Geomagnetic Storms in the Arctic Ionosphere
Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard; Published by: Published on: |
2015 |
Use of radio occultation to probe the high-latitude ionosphere We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere\textendashionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejec ... Mannucci, A.; Tsurutani, B.; Verkhoglyadova, O.; Komjathy, A.; Pi, X.; Published by: Atmospheric Measurement Techniques Published on: 07/2015 YEAR: 2015   DOI: 10.5194/amt-8-2789-2015 |
Solar wind driving of ionosphere-thermosphere responses during three storms on St. Patrick's Day.
Verkhoglyadova, Olga; Tsurutani, Bruce; Mannucci, Anthony; Komjathy, Attila; Mlynczak, Martin; Hunt, Linda; Paxton, Larry; Published by: Published on: |
2014 |
Large magnitude increases in ionospheric total electron content (TEC) that occur over 1\textendash3\ h on the dayside are a significant manifestation of the main phases of superstorms. For the largest superstorms of solar cycle 23 (based on the Dst index), ground networks of GPS receivers measured peak total electron content increases greater than a factor of 2 relative to quiet time TEC averaged over the broad latitude band \textpm40\textdegree for local times 1200\textendash1600\ LT. Near 30\textdegre ... Mannucci, A.J.; Crowley, G.; Tsurutani, B.T.; Verkhoglyadova, O.P.; Komjathy, A.; Stephens, P.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 08/2014 YEAR: 2014   DOI: 10.1016/j.jastp.2014.01.001 |
2012 |
Schunk, Robert; Scherliess, L; Eccles, JV; Gardner, LC; Sojka, JJ; Zhu, L; Pi, X; Mannucci, A; Wilson, BD; Komjathy, A; , others; Published by: Published on: |
2011 |
Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Komjathy, A.; Runge, T.; Published by: Journal of Geophysical Research Published on: Jan-01-2011 YEAR: 2011   DOI: 10.1029/2011JA016604 |
2010 |
onosphere-thermosphere science has long been hampered by a lack of measurements of the underlying forces that determine plasma structure. These forces include electric fields, thermospheric composition, winds and solar EUV irradiance. All of these forces are dynamic quantities and of great importance to the underlying science. The rapid proliferation of electron density and total electron content measurements from ground and space-borne GPS receivers and other instruments suggests a great potential in the following indirect ... Mannucci, Anthony; Pi, Xiaoqing; Butala, Mark; Stephens, Phil; Wilson, Brian; Komjathy, Attila; Iijima, Byron; Akopian, Vardan; Dumett, Miguel; Published by: To advocate developing a model-based approach to retrieving the driving forces from measurements of electron density structure and dynamics Published on: |
2009 |
We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7\textendash11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E\texttimesB drift ... Mannucci, Anthony; Tsurutani, Bruce; Kelley, Michael; Iijima, Byron; Komjathy, Attila; Published by: Journal of Geophysical Research Published on: Jan-01-2009 YEAR: 2009   DOI: 10.1029/2009JA014043 |
2006 |
GNSS-based space weather systems including COSMIC ionospheric measurements LORAAS on ARGOS, GUVI on TIMED SSUSI/SSULI on DMSP TIP on COSMIC Komjathy, Attila; Mandrake, Lukas; Wilson, Brian; Iijima, Byron; Pi, Xiaoqing; Hajj, George; Mannucci, Anthony; Published by: Published on: |
1