GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 6 entries in the Bibliography.


Showing entries from 1 through 6


2021

Development and Validation of Precipitation Enhanced Densities for the Empirical Canadian High Arctic Ionospheric Model

The Empirical Canadian High Artic Ionospheric Model (E-CHAIM) provides the four-dimensional ionosphere electron density at northern high latitudes (\textgreater50° geomagnetic latitude). Despite its emergence as the most reliable model for high-latitude ionosphere density, there remain significant deficiencies in E-CHAIM s representation of the lower ionosphere (below ∼200 km) due to a sparsity of reliable measurements at these altitudes, particularly during energetic particle precipitation events. To address this deficie ...

Watson, C.; Themens, D.; Jayachandran, P.;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2021SW002779

auroral region; Ionosphere; ionosphere density; magnetosphere-ionosphere-thermosphere coupling; particle precipitation; polar cap

A precipitation parameterization for the Empirical Canadian High Arctic Ionospheric Model (E-CHAIM) and other empirical models

Precipitation flux and mean energy are then modeled based on TIMED GUVI-and DMSP SSUSI-inferred precipitation characteristics. Beginning with an overview of how the

Themens, David; Jayachandran, Thayyil; McCaffrey, Anthony; Reid, Benjamin; Watson, Chris;

Published by: 43rd COSPAR Scientific Assembly. Held 28 January-4 February      Published on:

YEAR: 2021     DOI:

2019

Development of a GUVI/SSUSI-based model for E-region electron density enhancements at northern auroral latitudes

Watson, Christopher; Themens, David; Jayachandran, PT;

Published by:       Published on:

YEAR: 2019     DOI:

2013

An interhemispheric comparison of GPS phase scintillation with auroral emission observed at the South Pole and from the DMSP satellite

The global positioning system (GPS) phase scintillation caused by highlatitude ionospheric irregularities during an intense high-speed stream (HSS) of the solar wind from April 29 to May 5, 2011, was observed using arrays of GPS ionospheric scintillation and total electron content monitors in the Arctic and Antarctica. The one-minute phase-scintillation index derived from the data sampled at 50 Hz was complemented by a proxy index (delta phase rate) obtained from 1-Hz GPS data. The scintillation occurrence coincided with ...

Prikryl, Paul; Zhang, Yongliang; Ebihara, Yusuke; Ghoddousi-Fard, Reza; Jayachandran, Periyadan; Kinrade, Joe; Mitchell, Cathryn; Weatherwax, Allan; Bust, Gary; Cilliers, Pierre; , others;

Published by: Annals of Geophysics      Published on:

YEAR: 2013     DOI:

An interhemispheric comparison of GPS phase scintillation with auroral emission observed at South Pole and from DMSP satellite

Prikryl, Paul; Zhang, Yongliang; Ebihara, Yusuke; Ghoddousi-Fard, Reza; Jayachandran, Periyadan; Kinrade, Joe; Mitchell, Cathryn; Weatherwax, Allan; Bust, Gary; Cilliers, Pierre; , others;

Published by: Annals of Geophysics      Published on:

YEAR: 2013     DOI:

2008

Oscillations of the equatorward boundary of the ion auroral oval – radar observations

Three SuperDARN radars in the afternoon-midnight sector of the auroral oval detected a boundary oscillation, originating near ∼1800 MLT sector. Analysis of the phase of the oscillations measured in three meridians indicates that the disturbance has a longitudinally (azimuthally) isolated source and away from which it propagates. The eastward and westward phase speeds are 2.6 and 3.6 km/s respectively and the period is roughly 28 minutes. An examination of the geo-synchronous magnetic field inclination also revealed oscilla ...

Jayachandran, P.; Sato, N.; Ebihara, Y.; Yukimatu, A.; Kadokura, A.; MacDougall, J.; Donovan, E.; Liou, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2008     DOI: https://doi.org/10.1029/2007JA012870

Boundary oscillation; SuperDARN radars; Convection



  1