GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 11 entries in the Bibliography.


Showing entries from 1 through 11


2022

Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of solar cycle 24

We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. It is found that the mid-latitudes region has exhibited a large decrease in ∑O/N2 during all the phases of the storms under consideration, which corresponds well to the observed negative storm effects. This decrea ...

Younas, Waqar; Khan, Majid; Amory-Mazaudier, C.; Amaechi, Paul; Fleury, R.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.027

CTIPe model; Disturbed ∑O/N; GUVI/TIMED data; Hemispheric asymmetries; REC

Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017

Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 ...

Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi;

Published by: Remote Sensing      Published on: jan

YEAR: 2022     DOI: 10.3390/rs14030652

space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents

VTEC observations of intense geomagnetic storms above Nepal: comparison with satellite data, CODE and IGSG models

In this article, we analyze vertical total electron content (VTEC) over Nepal for 4 periods: March 14–25, 2015, June 18–29, 2015, May 24–June 4, 2017, and September 3–14, 2017. In each period, there are quiet geomagnetic days and intense geomagnetic stormy days. The VTEC observed during these periods has observed both positive and negative ionospheric storms. We compared VTEC Receiver-Independent Exchange Format (RINEX) observations with the Global Ionospheric Map (GIM), Centre for Orbit Determination in Europe (CODE ...

Pandit, D; Amory-Mazaudier, Christine; Fleury, R; Chapagain, NP; Adhikari, B;

Published by: Indian Journal of Physics      Published on:

YEAR: 2022     DOI: 10.1007/s12648-022-02441-w

Middle and low latitudes hemispheric asymmetries in∑ O/N2 and TEC during intense magnetic storms of Solar Cycle 24

We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season.

Younas, Waqar; Khan, Majid; Amory-Mazaudier, C; Amaechi, Paul; Fleury, R;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.027

2021

B2 Thickness Parameter Response to Equinoctial Geomagnetic Storms

The thickness parameters that most empirical models use are generally defined by empirical relations related to ionogram characteristics. This is the case with the NeQuick model that uses an inflection point below the F2 layer peak to define a thickness parameter of the F2 bottomside of the electron density profile, which is named B2. This study is focused on the effects of geomagnetic storms on the thickness parameter B2. We selected three equinoctial storms, namely 17 March 2013, 2 October 2013 and 17 March 2015. To invest ...

Migoya-Orué, Yenca; Alazo-Cuartas, Katy; Kashcheyev, Anton; Amory-Mazaudier, Christine; Radicella, Sandro; Nava, Bruno; Fleury, Rolland; Ezquer, Rodolfo;

Published by: Sensors      Published on: jan

YEAR: 2021     DOI: 10.3390/s21217369

Geomagnetic storms; total electron content; ionospheric empirical models; NeQuick model; thickness parameter

2020

Ionospheric and magnetic signatures of a space weather event on 25—29 August 2018: CME and HSSWs

Younas, W; Amory-Mazaudier, Christine; Khan, Majid; Fleury, R;

Published by: Journal of geophysical research: space physics      Published on:

YEAR: 2020     DOI:

Ionospheric and magnetic signatures of a space weather event on 25—29 August 2018: CME and HSSWs

We present a study concerning a space weather event on 25–29 August 2018, accounting for its ionospheric and magnetic signatures at low latitudes and midlatitudes. The effects of a

Younas, W; Amory-Mazaudier, Christine; Khan, Majid; Fleury, R;

Published by: Journal of geophysical research: space physics      Published on:

YEAR: 2020     DOI: 10.1029/2020JA027981

2018

Multivariable Comprehensive Analysis of Two Great Geomagnetic Storms of 2015

During the year 2015 two great geomagnetic storms (Dst\ \<\ -200\ nT) occurred on 17 March and 22 June. These two geomagnetic storms have similarities. They occurred during the same decreasing phase of the sunspot cycle 24. The interplanetary and magnetospheric environments were calm before the beginning of the storms. Both events were due to Coronal Mass Ejections and High-Speed Solar Wind. Variations of the solar wind velocity and the Bz component of the interplanetary magnetic field were also similar. ...

Kashcheyev, A.; e, Migoya-Oru\; Amory-Mazaudier, C.; Fleury, R.; Nava, B.; Alazo-Cuartas, K.; Radicella, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2018

YEAR: 2018     DOI: 10.1029/2017JA024900

2016

Middle- and low-latitude ionosphere response to 2015 St. Patrick\textquoterights Day geomagnetic storm

This paper presents a study of the St Patrick\textquoterights Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting ...

Nava, B.; iguez-Zuluaga, Rodr\; Alazo-Cuartas, K.; Kashcheyev, A.; e, Migoya-Oru\; Radicella, S.M.; Amory-Mazaudier, C.; Fleury, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2016

YEAR: 2016     DOI: 10.1002/2015JA022299

Middle-and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm

Nava, B; iguez-Zuluaga, Rodr\; Alazo-Cuartas, K; Kashcheyev, A; e, Migoya-Oru\; Radicella, SM; Amory-Mazaudier, Christine; Fleury, Rolland;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2016     DOI: 10.1002/2015JA022299

2014

Modelling ionospheric effects for L band GNSS receivers at high latitudes

The main objective of this study was to figure out a relationship between space weather environment phenomena (linked to solar and geomagnetic activity) and ionospheric events that impact L-band operating satellite systems (scintillations, electron content gradients), especially satellite navigation services, in the Nordic European area. A simple empirical model to forecast index of rate of change of the total electron content (ROTI) at high latitude has been developed associated with Kp geomagnetic prediction and the use ...

Boscher, D.; Carvalho, F.; Fabbro, V.; Lemorton, J.; Fleury, R.;

Published by:       Published on:

YEAR: 2014     DOI: 10.1109/EuCAP.2014.6902380

high latitude; Ionosphere; radiowave propagation; scintillation; solar and geomagnetic activity



  1