GUVI Biblio


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 3 entries in the Bibliography.

Showing entries from 1 through 3


Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22\textendash23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques

We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22\textendash23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were larg ...

Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; isson, Co; Hairston, M.; Coley, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/jgra.v123.310.1002/2017JA024981


Prompt penetration electric fields and the extreme topside ionospheric response to the June 22\textendash23, 2015 geomagnetic storm as seen by the Swarm constellation

Using data from the three Swarm satellites, we study the ionospheric response to the intense geomagnetic storm of June 22\textendash23, 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the second strongest geomagnetic storm in the current 24th solar cycle. A specific configuration of the Swarm satellites allowed investigation of the evolution of the storm-time ionospheric alterations on the day- and the nightside quasi-simultaneously. With the development of the main phase of the storm, a s ...

Astafyeva, Elvira; Zakharenkova, Irina; Alken, Patrick;

Published by: Earth, Planets and Space      Published on: 09/2016

YEAR: 2016     DOI: 10.1186/s40623-016-0526-x


Ionospheric response to the 2015 St. Patrick\textquoterights Day storm: A global multi-instrumental overview

We present the first multi-instrumental results on the ionospheric response to the geomagnetic storm of 17\textendash18 March 2015 (the St. Patrick\textquoterights Day storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of -233 nT). The storm caused complex effects around the globe. The most dramatic positive ionospheric storm occurred at low latitudes in the morning (~100\textendash150\% enhancement) and postsunset (~80\textendash100\% enhancement) sectors. These significant vertical tota ...

Astafyeva, Elvira; Zakharenkova, Irina; Förster, Matthias;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021629

geomagnetic storm; hemispheric asymmetry; Ionosphere; negative storm; positive storm; Swarm mission