Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations



AuthorSheng, Cheng; Deng, Yue; Yue, Xinan; Huang, Yanshi;
KeywordsCOSMIC; Interhemispheric asymmetry; Joule heating; Pedersen conductivity
Abstract

Altitudinal distribution of Joule heating is very important to the thermosphere and ionosphere, which is roughly proportional to the Pedersen conductance at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations from 2008 to 2011, the height-integrated Pedersen conductivities in both E (100\textendash150\ km) and F (150\textendash600\ km) regions and their ratio γPγP (PE/PF∑PE/∑PF) have been calculated. The result shows that the maximum ratio in the northern summer hemisphere is ~5.5, which is smaller than that from the Thermosphere\textendashIonosphere\textendashElectrodynamics General Circulation Model (TIE-GCM v1.94) simulation (~9). This indicates that the energy inputs into the F region may be underestimated in the model. The seasonal variations of the ratio have been investigated for both hemispheres, and an interhemispheric asymmetry has been identified. The variational trend of the ratio is similar in both hemispheres, which reaches minimum at local summer and maximum at local winter. However, the difference of the ratio from local summer to local winter in the southern hemisphere is larger than that in the northern hemisphere.

Year of Publication2014
JournalJournal of Atmospheric and Solar-Terrestrial Physics
Volume115-116
Number of Pages79-86
Section
Date Published08/2014
ISBN
URLhttp://www.sciencedirect.com/science/article/pii/S1364682613003313
DOI10.1016/j.jastp.2013.12.013