Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Topside ionospheric conditions during the 7—8 September 2017 geomagnetic storm



AuthorJimoh, Oluwaseyi; Lei, Jiuhou; Zhong, Jiahao; Owolabi, Charles; Luan, Xiaoli; Dou, Xiankang;
Keywords
AbstractThe uplooking total electron contents (TECs) from the GRACE, SWARM-A, TerraSAR-X, and MetOp-A satellites and in situ electron density (Ne) from SWARM-A were utilized to investigate the topside ionospheric conditions during the 7–8 September 2017 geomagnetic storm. The rate of TEC index (ROTI) and rate of density index (RODI), which are derivative indices of TEC and Ne, respectively, were also used to characterize the topside ionospheric irregularities. The main results of this study are as follows: (1) There were significant enhancements seen in the uplooking TEC during the first main phase of the storm. (2) The uplooking TEC did not show unusual enhancement at the morning and evening local times in the Asian-Australian sector during the recovery phase of the storm. (3) Prominent TEC hemispheric asymmetry at the middle and high latitudes was observed at both day and night sectors. (4) Long-duration recovery of topside TEC with respect to the prestorm condition was also detected in this event. (5) Nighttime ROTI enhancements were presented in a wide latitudinal range from the equator to the poles during the main phases of the storm. (6) The ionospheric electric field disturbances associated with IMF-Bz fluctuations probably played a very important role in triggering ionospheric irregularities during the relatively weak geomagnetic activity on 7 September, which implies that ionospheric irregularities do not necessarily occur under the severe geomagnetic conditions only.
Year of Publication2019
JournalJournal of Geophysical Research: Space Physics
Volume124
Number of Pages9381-9404
Section
Date Published
ISBN
URL
DOI10.1029/2019JA026590