Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Validation of the Plasma Densities and Temperatures From the ISS Floating Potential Measurement Unit



AuthorCoffey, Victoria; Wright, Kenneth; Minow, Joseph; Schneider, Todd; Vaughn, Jason; Craven, Paul; Chandler, Michael; Koontz, Steven; Parker, Linda; Bui, Them;
Keywords
AbstractThe validation of the floating potential measurement unit (FPMU) plasma density and temperature measurements is an important step in the process of evaluating International Space Station (ISS) spacecraft charging issues including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on the Space Station are due to the combined Vsp times B effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160-V U.S. solar array modules. The ionospheric plasma environment is needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. The validation of these charging models requires the comparison of their predictions with measured FPMU values. The FPMU measurements themselves must also be validated for use in manned flight safety work. This paper presents preliminary results from a comparison of densities and temperatures derived from the FPMU Langmuir probes and plasma impedance probe with the independent density and temperature measurements from a spaceborne ultraviolet imager, a ground-based incoherent scatter radar, and ionosonde sites.
Year of Publication2008
JournalIEEE Transactions on Plasma Science
Volume36
Number of Pages2301-2308
Section
Date PublishedOct
ISBN
URL
DOI10.1109/TPS.2008.2004271