Geomagnetic and auroral activity driven by corotating interaction regions during the declining phase of Solar Cycle 23

Abstract

A superposed epoch analysis is performed to investigate the relative impact of the solar wind/interplanetary magnetic field (IMF) on geomagnetic activity, auroral hemispheric power, and auroral morphology during corotating interaction regions (CIRs) events between 2002 and 2007, when auroral images from Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Global Ultraviolet Imager were available. Four categories of CIRs have been compared. These were classified by the averaged IMF Bz and the time of maximum solar wind dynamic pressure around the CIR stream interface or onset time. It is found that during CIR events: (1) The peaks of auroral power and Kp were largely associated with dominant southward Bz, whereas auroral activity also became stronger with increases of solar wind speed, density, and dynamic pressure. (2) The percentage and absolute increases of auroral hemispheric power with solar wind speed were much greater under dominantly northward Bz conditions than under dominantly southward Bz conditions. (3) The enhancement of the auroral power and Kp with increasing solar wind speed followed the same pattern, for both dominantly southward and northward Bz conditions, regardless of the behavior of solar wind density and dynamic pressure. These results suggest that, during CIR events, southward Bz played the most critical role in determining geomagnetic and auroral activity, whereas solar wind speed was the next most important contributor. The solar wind dynamic pressure was the less important factor, as compared with Bz and solar wind speed. Relatively strong auroral precipitation energy flux (\> ~3 mW/m2) occurred in a wider auroral oval region after the stream interface than before it for both dominantly northward and southward Bz conditions. These conditions enhanced the auroral hemispheric power after the stream interface. Intense auroral precipitation (\> ~4 mW/m2) generally occurred widely at night under dominantly southward Bz conditions, but the location of this precipitation in the auroral oval was different when it was associated with different solar wind density and speed conditions.

Year of Publication
2013
Journal
Journal of Geophysical Research: Space Physics
Volume
118
Number of Pages
1255-1269
Date Published
03/2013
URL
http://doi.wiley.com/10.1002/jgra.50195
DOI
10.1002/jgra.50195
Download citation