First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: F Region Responses and Comparisons Over the American Sector

Abstract
Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southern (SH) Hemispheres in the American sector. The deviation of f o F 2 (Df o F 2) and h m F 2 (Dh m F 2) are used to quantify the ionospheric storm effects. Different F region responses were observed during the main phase (August 25–26), which is attributed to the traveling ionospheric disturbances and disturbed eastward electric field during nighttime. The F region responses became highly asymmetric between the NH and SH at the early recovery phase (RP, August 26) due to a combination of physical mechanisms. The observed asymmetries are interpreted as caused by modifications in the thermospheric composition and a rapid electrodynamic mechanism. The persistent enhanced thermospheric [O]/[N2] ratio observed from August 27 to 29 combined with the increased solar wind speed induced by the HSS and IMF B z fluctuations seem to be effective in causing the positive ionospheric storm effects and the shift of the Equatorial Ionization Anomaly crest to higher than typical latitudes. Consequently, the most dramatic positive ionospheric storm during the RP occurred over Santa Maria (∼120\%).
Year of Publication
2021
Journal
Journal of Geophysical Research: Space Physics
Volume
126
Number of Pages
e2020JA028663
ISSN Number
2169-9402
URL
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JA028663
DOI
10.1029/2020JA028663
Download citation