Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere

Abstract
We present the ionospheric disturbance responses over low-latitude regions by using total electron content from Geostationary Earth Orbit (GEO) satellites of the BeiDou Navigation Satellite System (BDS), ionosonde data and Swarm satellite data, during the geomagnetic storm in August 2018. The results show that a prominent total electron content (TEC) enhancement over low-latitude regions is observed during the main phase of the storm. There is a persistent TEC increase lasting for about 1–2 days and a moderately positive disturbance response during the recovery phase on 27–28 August, which distinguishes from the general performance of ionospheric TEC in the previous storms. We also find that this phenomenon is a unique local-area disturbance of the ionosphere during the recovery phase of the storm. The enhanced foF2 and hmF2 of the ionospheric F2 layer is observed by SANYA and LEARMONTH ionosonde stations during the recovery phase. The electron density from Swarm satellites shows a strong equatorial ionization anomaly (EIA) crest over the low-latitude area during the main phase of storm, which is simultaneous with the uplift of the ionospheric F2 layer from the SANYA ionosonde. Meanwhile, the thermosphere O/N2 ratio shows a local increase on 27–28 August over low-latitude regions. From the above results, this study suggests that the uplift of F layer height and the enhanced O/N2 ratio are possibly main factors causing the local-area positive disturbance responses during the recovery phase of the storm in August 2018.
Year of Publication
2022
Journal
Remote Sensing
Volume
14
Number of Pages
2272
Date Published
jan
ISSN Number
2072-4292
URL
https://www.mdpi.com/2072-4292/14/9/2272
DOI
10.3390/rs14092272
Download citation