• Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2276 entries in the Bibliography.

Showing entries from 1 through 50


On the impact of meridional wind circulation changes in the electron density distribution over the Indian equatorial and low latitude ionospheric region during a severe geomagnetic storm

Using a suite of instruments, which included a chain of ground-based dual-frequency GPS receivers, and magnetometers, we have studied the importance of thermospheric meridional wind circulation in controlling the distribution of plasma over the Indian low latitude ionospheric regions during the period of a severe geomagnetic storm. The storm on 15 May 2005, which had its onset coinciding with the local noon time sector for the Indian ionospheric zone, was a severe geomagnetic storm with symH ∼ - 305 nT. A steep increase in the Total Electron Content (TEC) of the ionosphere over the entire Indian ionospheric region was observed on May 15. The enhancement in the TEC was well correlated with the increase in ΔH at the dip-equator due to the prompt penetration of the convection electric field associated with the storm. However, contrary to the previous studies on the storm impact over low latitude regions, a clear signature of disturbance dynamo was absent on the day after the storm. Enhancements in the TEC were observed on May 16, a day after the storm, as well, though the ΔH at the dip-equator was quite below the quite-time mean. The TEC remained well above its monthly mean over the entire Indian ionospheric region during the storm recovery period. We suggest that the TEC enhancement on May 16, even though it looked like due to a prompt penetration effect, was directly related to the compositional disturbances as given by the O/N2 ratio. We conclude that the meridional wind circulation plays an important role in the distribution of electron density over the equatorial and low latitudinal region during the period of a geomagnetic storm.

Ambili, K.; Choudhary, R.;

Published by: Advances in Space Research      Published on: oct

YEAR: 2022     DOI: 10.1016/j.asr.2022.06.027

Compositional disturbances; Equatorial ionosphere; geomagnetic storm; total electron content

Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements

Low-latitude plasma blobs are localized density enhancements of electron density that are occasionally observed in the night-time tropical ionosphere. Two-dimensional (2D) imaging of this phenomenon has been rare and frequently restricted to Central/South America, which is densely covered with ground-based airglow imagers and Global Navigation Satellite System (GNSS) receivers. In Africa, on the contrary, no 2D image of a blob has been reported. Here we present two low-latitude blob events above Africa, one in the Northern summer and the other in winter, in the 2-dimensional Far-UltraViolet (FUV) images from the Global-scale Observations of the Limb and Disk (GOLD) mission. Additionally, multiple satellites (four spacecraft per event) on the Low-Earth-Orbit (LEO) encountered the blob events, some within the GOLD images and some outside. The LEO data support the robustness of GOLD observations and bridge time gaps between the consecutive images. Properties of the two blob events above Africa generally support the conclusions in a previous case study for Central/South America. Plasma therein exhibited higher O+ fraction and faster ion flow toward outer L-shells than the ambient. The blobs were conjugate to locally intensified Equatorial Ionization Anomaly crests without conspicuous equatorward-westward propagation. Our results demonstrate the usefulness of GOLD and multiple LEO satellites in monitoring the ionosphere above Africa, which is a fascinating laboratory of low-latitude electrodynamics but still waiting for more observatories to be deployed.

Park, Jaeheung; Min, Kyoung; Eastes, Richard; Chao, Chi; Kim, Hee-Eun; Lee, Junchan; Sohn, Jongdae; Ryu, Kwangsun; Seo, Hoonkyu; Yoo, Ji-Hyeon; Lee, Seunguk; Woo, Changho; Kim, Eo-Jin;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.021

COSMIC-2; GOLD; ICON; Low-latitude blobs; NextSat-1; swarm

The geoeffectiveness of TIE-GCM simulations of ionospheric critical frequency foF2 at the equatorial station of Thiruvananthapuram in the Indian sector

An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthapuram reasonably well for all the three solar activity conditions. Seasonally the difference between the measured and the simulated foF2 tended to be higher during winter (maximum of 25\%). Additionally, it is found that TIE-GCM is not reproducing the reduction in the foF2 values in the noon hours i.e. the bite out, which is very prominent in the foF2 observations predominantly during 2002. A detailed analysis revealed that, there is good agreement between the modeled and measured values for the whole observation period, with an R value of 0.81. From the comparison it is clear that the model underestimates the observations in general but for the periods when bite out is prominent, the model gives an over estimation. The comprehensive comparisons during different solar activity conditions have shown that the difference between modeled and measured ionospheric peak densities lies in the range of. 10 to −25\%. This study brings out the efficacy of the model in simulating the temporal seasonal and solar cycle variability of ionospheric foF2 over the equatorial Indian region.

Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.02.018

Comparison; foF2; TIE-GCM

New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT

We propose a new method for retrieving the atmospheric number density profile in the lower thermosphere, based on the X-ray Earth occultation of the Crab Nebula with the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite. The absorption and scattering of X-rays by the atmosphere result in changes in the X-ray energy, and the Earth’s neutral atmospheric number density can be directly retrieved by fitting the observed spectrum and spectrum model at different altitude ranges during the occultation process. The pointing observations from LE/Insight-HXMT on 16 November 2017 are analyzed to obtain high-level data products such as lightcurve, energy spectrum and detector response matrix. The results show that the retrieved results based on the spectrum fitting in the altitude range of 90–200 km are significantly lower than the atmospheric density obtained by the NRLMSISE-00 model, especially in the altitude range of 110–120 km, where the retrieved results are 34.4\% lower than the model values. The atmospheric density retrieved by the new method is qualitatively consistent with previous independent X-ray occultation results (Determan et al., 2007; Katsuda et al., 2021), which are also lower than empirical model predictions. In addition, the accuracy of atmospheric density retrieved results decreases with the increase of altitude in the altitude range of 150–200 km, and the accurate quantitative description will be further analyzed after analyzing a large number of X-ray occultation data in the future.

Yu, Daochun; Li, Haitao; Li, Baoquan; Ge, Mingyu; Tuo, Youli; Li, Xiaobo; Xue, Wangchen; Liu, Yaning;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.02.030

Atmospheric density vertical profile; Energy spectrum fitting; X-ray occultation

The investigation on daytime conjugate hemispheric asymmetry along 100°E longitude using observations and model simulations: New insights

The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, as the month-to-month variations are found to provide intricate details. The anomaly at the conjugate stations is highly asymmetric even during the equinoctial months of March and October, whereas it is nearly symmetric during April. During June/July, the morning time hemispheric asymmetry (larger on the winter side) temporarily reduces in the midday period and then reverses sign (larger in summer) in the afternoon. The NmF2 observations suggest a close relation of hemispheric symmetry to the position of the subsolar point with respect to the dip equator and a shift/expansion of the trough region of the EIA towards the summer hemisphere. The inter-hemispheric comparison of the hmF2 suggests a strong modulating influence of meridional winds at both the inner and outer stations which depend strongly on the relative position of the subsolar point with respect to the field line geometry. Theoretical (SAMI3/SAMI2) and empirical model (IRI) simulations show a meridional movement of the EIA region with the subsolar point. The winter to summer hemisphere movement of the EIA trough and crest region is also reproduced in the GIM-TEC along 100°E for 2015. This shifting or tailoring of the trough and the crest region is attributed primarily to the meridional wind field, which varies with the shifting position of subsolar point relative to the field line geometry. The seasonal and intra-seasonal difference in the NmF2 hemispheric asymmetry is attributed to the misalignment of the two centers of power viz., the thermospheric/neutral processes and the electromagnetic forces, due to the geographic-geomagnetic offset in this longitude.

Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.02.058

NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar

Measurement of the vertical atmospheric density profile from the X-ray Earth occultation of the Crab Nebula with Insight-HXMT

\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater X-ray Earth occultation sounding (XEOS) is an emerging method for measuring the neutral density in the lower thermosphere. In this paper, the X-ray Earth occultation (XEO) of the Crab Nebula is investigated using the Hard X-ray Modulation Telescope (Insight-HXMT). The pointing observation data on the 30 September 2018 recorded by the low-energy X-ray telescope (LE) of Insight-HXMT are selected and analysed. The extinction light curves and spectra during the X-ray Earth occultation process are extracted. A forward model for the XEO light curve is established, and the theoretical observational signal for light curve is predicted. The atmospheric density model is built with a scale factor to the commonly used Mass Spectrometer Incoherent Scatter Radar Extended model (MSIS) density profile within a certain altitude range. A Bayesian data analysis method is developed for the XEO light curve modelling and the atmospheric density retrieval. The posterior probability distribution of the model parameters is derived through the Markov chain–Monte Carlo (MCMC) algorithm with the NRLMSISE-00 model and the NRLMSIS 2.0 model as basis functions, and the respective best-fit density profiles are retrieved. It is found that in the altitude range of 105–200 km, the retrieved density profile is 88.8 \% of the density of NRLMSISE-00 and 109.7 \% of the density of NRLMSIS 2.0 by fitting the light curve in the energy range of 1.0–2.5 keV based on the XEOS method. In the altitude range of 95–125 km, the retrieved density profile is 81.0 \% of the density of NRLMSISE-00 and 92.3 \% of the density of NRLMSIS 2.0 by fitting the light curve in the energy range of 2.5–6.0 keV based on the XEOS method. In the altitude range of 85–110 km, the retrieved density profile is 87.7 \% of the density of NRLMSISE-00 and 101.4 \% of the density of NRLMSIS 2.0 by fitting the light curve in the energy range of 6.0–10.0 keV based on the XEOS method. Goodness-of-fit testing is carried out for the validation of the results. The measurements of density profiles are compared to the NRLMSISE-00 and NRLMSIS 2.0 model simulations and the previous retrieval results with NASA s Rossi X-ray Timing Explorer (RXTE) satellite. For further confirmation, we also compare the measured density profile to the ones by a standard spectrum retrieval method with an iterative inversion technique. Finally, we find that the retrieved density profile from Insight-HXMT based on the NRLMSISE-00 and NRLMSIS 2.0 models is qualitatively consistent with the previous retrieved results from RXTE. The results of light curve fitting and standard energy spectrum fitting are in good agreement. This research provides a method for the evaluation of the density profiles from MSIS model predictions. This study demonstrates that the XEOS from the X-ray astronomical satellite Insight-HXMT can provide an approach for the study of the upper atmosphere. The Insight-HXMT satellite can join the family of the XEOS. The Insight-HXMT satellite with other X-ray astronomical satellites in orbit can form a space observation network for XEOS in the future.\textless/p\textgreater

Yu, Daochun; Li, Haitao; Li, Baoquan; Ge, Mingyu; Tuo, Youli; Li, Xiaobo; Xue, Wangchen; Liu, Yaning; Wang, Aoying; Zhu, Yajun; Luo, Bingxian;

Published by: Atmospheric Measurement Techniques      Published on: may

YEAR: 2022     DOI: 10.5194/amt-15-3141-2022

Comments on “A new method to subtract dayglow for auroral observation of SSUSI in LBH ranges based on the improved AURIC” by Wang et al. (2021)

A paper A new method to subtract dayglow for auroral observation of SSUSI in LBH ranges based on the improved AURIC reports a new method to estimate the dayglow intensities in DMSP/SSUSI LBH bands using an improved AURIC model. It is claimed that the new method offers a better alternative than the SSUSI operational algorithm which uses a data based table. The paper showed a few examples and compared them with SSSUI operational results. The comparison indicated that the new method didn t offer any improvement and provided net auroral images with strong residual dayglow. On the other hand, the auroral oval can be easily recognized in the SSUSI data using the operational algorithm, despite some weak residual background which is expected due to count errors in the data. There are likely a few reasons why the method led to poor results: (1) dayglow contribution in SSUSI data covers solar zenith angles (SZA) beyond 90° and the AURIC model is limited to SZA ≤90°, (2) In addition to SZA, SSUSI radiances also depend on look angle (along and cross track pixels). Such a look-angle effect was apparently not reported in the paper. (3) The localized peaks in the plots (radiance versus SZA) were likely due to changes in solar EUV flux, SZA as well as noises caused Southern Atlantic Anomaly, MeV particles at sub-auroral latitude and glint in the Ap dependent data bins. The examples in the paper indicate that the new algorithm is not appropriate to estimate net SSUSI dayglow intensity.

Zhang, Yongliang; Paxton, Larry; Schaefer, Robert;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: mar

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105833

AURORA; dayglow; far ultraviolet emission

Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes

Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime;

Published by:       Published on: mar

YEAR: 2022     DOI: 10.5194/egusphere-egu22-8194

Quantification of the role of gravity wave induced TIDs in modulating ESF day to day variability during geomagnetically disturbed periods

The control of magnetic disturbance induced seed perturbations on the daily variation in night-time ionization irregularity occurrence is studied using ionosonde data and TIMED/GUVI neutral density data at the magnetic equatorial region, Trivandrum. The study reveals that there is a requisite threshold seed amplitude for ESF to occur at a particular altitude and this requisite seed increases as the altitude decreases. This dependence of requisite seed perturbation on altitude for multiple years, which incorporates the electrodynamical effects also, is used as the basis for developing an empirical model to hind-cast ESF. Using the model, the threshold seed perturbation for any day of vernal equinox (ve) season of any year can be delineated if the solar flux index (F10.7) is known. The empirical model is also validated using the data for high and low solar activity periods. The model is able to hind-cast ESF with 92\% success for low solar activity while the success rate for high solar activity is 50\%. Further, the dependence of the threshold curves on neutral density is brought out, thereby confirming the role of ion-neutral coupling processes in modulating the same for magnetically disturbed periods. The geomagnetically disturbed period requisite seed amplitudes are higher than those for quiet periods at a given altitude. This study underlines the importance of disturbance induced seed perturbations and neutral density in controlling ESF occurrence.

Sruthi, T.; Manju, G.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.11.038

Equatorial ionosphere; Equatorial Spread F; Geomagnetically disturbed period; neutral density

Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite

\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater Lyman–Birge–Hopfield (LBH) emissions in the dayside thermosphere that can be used to invert the peak electron density of the F\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater layer (NmF\textlessspan class="inline-formula"\textgreater$_\textrm2$)\textless/span\textgreater at night and the \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="" id="M4" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="73a3f14187048fa14eee70dd1027ad23"\textgreater\textlesssvg:image xmlns:xlink="" xlink:href="amt-15-1577-2022-ie00001.svg" width="25pt" height="14pt" src="amt-15-1577-2022-ie00001.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater ratio in the daytime, respectively. Preliminary observations show that the IPM could monitor the global structure of the equatorial ionization anomaly (EIA) structure around 02:00 LT using atomic oxygen (OI) 135.6 nm nightglow. It could also identify the reduction of \textlessspan class="inline-formula"\textgreater\textlessmath xmlns="" id="M6" display="inline" overflow="scroll" dspmath="mathml"\textgreater\textlessmrow class="chem"\textgreater\textlessmi mathvariant="normal"\textgreaterO\textless/mi\textgreater\textlessmo\textgreater/\textless/mo\textgreater\textlessmi mathvariant="normal"\textgreaterN\textless/mi\textgreater\textless/mrow\textgreater\textless/math\textgreater\textlessspan\textgreater\textlesssvg:svg xmlns:svg="" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7662cd64e23809d534f2b5721e55261b"\textgreater\textlesssvg:image xmlns:xlink="" xlink:href="amt-15-1577-2022-ie00002.svg" width="25pt" height="14pt" src="amt-15-1577-2022-ie00002.png"/\textgreater\textless/svg:svg\textgreater\textless/span\textgreater\textless/span\textgreater\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater in the high-latitude region during the geomagnetic storm of 26 August 2018. The IPM-derived NmF\textlessspan class="inline-formula"\textgreater$_\textrm2$\textless/span\textgreater agrees well with that observed by four ionosonde stations along 120\textlessspan class="inline-formula"\textgreater$^\textrm∘$\textless/span\textgreater E with a standard deviation of 26.67 \%. Initial results demonstrate that the performance of IPM meets the design requirements and therefore can be used to study the thermosphere and ionosphere in the future.\textless/p\textgreater

Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian;

Published by: Atmospheric Measurement Techniques      Published on: mar

YEAR: 2022     DOI: 10.5194/amt-15-1577-2022

Geomagnetic Storm Effect on F2-Region Ionosphere during 2012 at Low- and Mid-Latitude-Latitude Stations in the Southern Hemisphere

The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, Canberra (45.65° S, 226.30° E), in the Australian Region, by analyzing the storm–time variations in the critical frequency of the F2-region (foF2). Out of six storms, a storm of 23–24 April did not produce any ionospheric effect. The storms of 30 September–3 October (minimum Dst = −122 nT) and 7–10 October (minimum Dst = −109 nT) are presented as case studies and the same analysis was done for the other four storms. The storm of 30 September–3 October, during its main phase, produced a positive ionospheric storm at all three stations with a maximum percentage increase in foF2 (∆foF2\%) of 45.3\% at Canberra whereas during the recovery phase it produced a negative ionospheric storm at all three stations with a maximum ∆foF2\% of −63.5\% at Canberra associated with a decrease in virtual height of the F-layer (h’F). The storm of 7–10 October produced a strong long-duration negative ionospheric storm associated with an increase in h’F during its recovery phase at all three stations with a maximum ∆foF2\% of −65.1\% at Townsville. The negative ionospheric storms with comparatively longer duration were more pronounced in comparison to positive storms and occurred only during the recovery phase of storms. The storm main phase showed positive ionospheric storms for two storms (14–15 July and 30 September–3 October) and other three storms did not produce any ionospheric storm at the low-latitude station indicating prompt penetrating electric fields (PPEFs) associated with these storms did not propagate to the low latitude. The positive ionospheric storms during the main phase are accounted to PPEFs affecting ionospheric equatorial E × B drifts and traveling ionospheric disturbances due to joule heating at the high latitudes. The ionospheric effects during the recovery phase are accounted to the disturbance dynamo electric fields and overshielding electric field affecting E × B drifts and the storm-induced circulation from high latitudes toward low latitudes leading to changes in the natural gas composition [O/N2] ratio.

Kumar, Edwin; Kumar, Sushil;

Published by: Atmosphere      Published on: mar

YEAR: 2022     DOI: 10.3390/atmos13030480

Geomagnetic storms; \textbfE × \textbfB drifts; disturbance dynamo electric fields; prompt penetrating electric fields; storm-induced circulation

Solar and interplanetary events that drove two CIR-related geomagnetic storms of 1 June 2013 and 7 October 2015, and their ionospheric responses at the American and African equatorial ionization Anomaly regions

This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model data alongside the GNSS data. The 1 June 2013 geomagnetic storm was driven by a combination of a weak CME and HSSs from solar coronal holes, while the 7 October 2015 storm was solely driven by HSSs. Storm-time hemispherical asymmetry in ionospheric TEC and irregularities distributions was consistently observed. Storm with minimum SYM-H value at day-side locations caused enhancement in plasma ionization and pole-ward movement of EIA crests, while storm with minimum SYM-H value at night-side locations caused reduction in plasma ionization and equator-ward movement of EIA crests. The phase of responses of the ionosphere to geomagnetic storms depends on the local time of storm’s onset and local time of the storm’s main phase minimum which also determine the orientation of Prompt Penetration Electric Field (PPEF). At storm’s onset time in the low latitude regions, the main storm-induced electric field is PPEF. Daytime eastward PPEF intensified plasma fountain to increase the EIA crests locations, while nighttime westward PPEF reversed plasma fountain to cause equator-ward collapse of the EIA crests. However, around the storm’s recovery phase, under southward turning of IMF Bz, depending on their orientations, PPEF and Disturbed Dynamo Electric Field (DDEF) collectively influenced low latitude ionosphere. Eastward PPEF at the Pre-Reversal Enhancement (PRE) time enhanced irregularities generation, while westward DDEF at PRE time inhibited irregularities generation. The season of storm’s occurrence is also a factor that dictates ionospheric response to a storm, for instance, the 7 October storm (SYM-H −124 nT) influenced the ionosphere more than the 1 June storm (SYM-H −137 nT). Both storms had long recovery phase. On pre-storm days, we observed stronger and well-developed EIA crests over the American sector than over the African sector.

Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.12.027

geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities

Plasma-neutral gas interactions in various space environments: Assessment beyond simplified approximations as a Voyage 2050 theme

In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (\textless 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.

Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro;

Published by: Experimental Astronomy      Published on: mar

YEAR: 2022     DOI: 10.1007/s10686-022-09846-9

Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050

Thermospheric density enhancement and limb O 130.4 nm radiance increase during geomagnetic storms

We explore a connection between thermospheric density enhancement and increase in thermospheric O 130.4 nm radiance. We observe TIMED/GUVI enhancements in the limb 130.4 nm radiances at ∼400 and ∼520 km on the dayside during four intense geomagnetic storms in 2003 and 2004. The enhancements were well correlated with Dst and CHAMP total neutral density at 400 km which represents O density as O is the dominant species at those altitudes. At the 400 and 520 km altitudes, O 130.4 nm emissions are mostly created by two comparable sources: solar resonance scatter and photoelectron impact excitation. The coincident disk 130.4 nm radiances, mostly due to emissions below 200 km (peaked around 130–140 km), were not clearly correlated with the limb radiances. Because the limb 130.4 nm radiances depend on O density, solar EUV and 130.4 nm fluxes, variations in the limb 130.4 nm radiance respond mostly to changes in O density when the solar EUV and 130.4 nm fluxes are stable. This explains the good correlation (correlation coefficients up to 0.98) between the limb 130.4 nm radiance and CHAMP neutral density. Once a quantitative relationship is established between GUVI limb 130.4 nm radiance and neutral density under both quiet and disturbed conditions and at different altitude levels through empirical or radiative transfer modeling, the limb 130.4 nm radiances can be used to retrieve O density profiles in the upper thermosphere.

Zhang, Yongliang; Paxton, Larry; Schaefer, R.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: mar

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105830

FUV emission; Geomagentic storms; neutral density; thermosphere

Contribution of the lower atmosphere to the day-to-day variation of thermospheric density

In this paper we carried out a numerical experiment using the Specified Dynamics mode of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). One SD-WACCM-X run was with realistic Kp and F10.7 and the other with constant Kp and F10.7. By comparing the day-to-day variability of thermosphere mass density at 300 km (low earth orbit, LEO) and 120 km (reentry level) in these two runs, we find that the density variation at 300 km is mainly driven by geomagnetic and solar forcing while at 120 km it is exclusively controlled by the lower atmosphere. At LEO altitudes, during solar minimum and geomagnetic quiet days, the impact from the lower atmosphere is much smaller than the effect of solar and geomagnetic variations but is not negligible (5–10\% vs 20\%).

Yue, Jia; Yu, Wandi; Pedatella, Nick; Bruinsma, Sean; Wang, Ningchao; Liu, Huixin;

Published by: Advances in Space Research      Published on: jun

YEAR: 2022     DOI: 10.1016/j.asr.2022.06.011

thermosphere; Lower atmosphere; Modeling; Satelllite drag

High and mid latitude and near subsolar point ionospheric and thermospheric responses to the solar flares and geomagnetic storms during low solar activity periods of 2017 and 2020

The paper observes the super-imposed effects of intense and moderate solar flares and Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storm events on the ionosphere and thermosphere at mid and high latitudes during low solar activity periods. The observations are conducted over a fixed longitude (∼117°W geographic) during May 27–31, 2017 (duration with intense geomagnetic storm without any significant solar flare event), September 3–6, 2017 (duration with solar flare events), September 7–16, 2017 (duration with intense to moderate solar flares as well as geomagnetic storms) and November 28–30, 2020 (duration with a moderate solar flare event with no geomagnetic storm in association). It is found that the effects were the highest during May 27–31, 2017 among all of these events. From the observations of super-imposed effects of the geophysical events, it was found that the effects of an X-class solar flare on September 10–12, 2017 on mid-latitude ionization were suppressed by the Disturbed Dynamo Electric Field (DDEF) from high latitudes during the recovery phase of an intense CME driven geomagnetic storm. The weak effects were also explained by the position of origination of the flare at the Sun. Correlations were observed between the variations in O/N2, neutral wind velocities and the mid and high latitude Total Electron Content (TEC) during these periods. Possible explanation is given for those few cases (for example, September 14, 2017) when the variations in O/N2 mismatched with the local TEC especially in the mid-latitudes. The effects of the solar flare event on November 28–30, 2020 which were short-lived have also been also observed at locations near the subsolar point from low latitudes in the southern hemisphere.

Sur, Dibyendu; Ray, Sarbani; Paul, Ashik;

Published by: Advances in Space Research      Published on: jul

YEAR: 2022     DOI: 10.1016/j.asr.2022.04.024

CME driven storms; HSSW driven storms; Joule heating; O/N ratio; Plasmaspheric contributions; Solar flare

Climatology of global, hemispheric and regional electron content variations during the solar cycles 23 and 24

We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effect is observed at low-latitudes followed by high and mid-latitudes region. The extent of saturation effect is more pronounced for F10.7 as compared to EUV. A wavelet transform is applied to global and hemispheric electron contents to examine the relative strength of different variations. The semi-annual variations dominate in the northern hemisphere, whereas annual variations dominate in the southern counterpart. The amplitude of annual variations in southern hemisphere is found to be higher than northern counterpart at all latitudes. This asymmetry in the amplitude of annual variation is maximum at low-latitudes, followed by mid and high-latitudes, respectively. The semi-annual variations are in-phase in both hemisphere and follow the solar cycle. The northern hemisphere depicts relatively large amplitude of semi-annual variations and exhibit the maximum effect at high-latitudes.

Younas, Waqar; Amory-Mazaudier, C.; Khan, Majid; Amaechi, Paul;

Published by: Advances in Space Research      Published on: jul

YEAR: 2022     DOI: 10.1016/j.asr.2022.07.029

annual variation; global electron content; Ionosphere; semi-annual variation; total electron content

A long-range forecasting model for the thermosphere based on the intelligent optimized particle filtering

The uncertainties associated with the variations in the thermosphere are responsible for the inaccurate prediction of the orbit decay of low Earth orbiting space objects due to the drag force. Accurate forecasting of the thermosphere is urgently required to avoid satellite collisions, which is a potential threat to the rapid growth of spacecraft applications. However, owing to the imperfections in the physics-based forecast model, the long-range forecast of the thermosphere is still primitive even if the accurate prediction of the external forcing is achieved. In this study, we constructed a novel methodology to forecast the thermosphere for tens of days by specifying the uncertain parameters in a physics-based model using an intelligent optimized particle filtering algorithm. A comparison of the results suggested that this method has the capability of providing a more reliable forecast with more than 30-days leading time for the thermospheric mass density than the existing ones under both weak and severe disturbed conditions, if solar and geomagnetic forcing is known. Moreover, the accurate estimation of the state of thermosphere based on this technique would further contribute to the understanding of the temporal and spatial evolution of the upper atmosphere.

Ren, Dexin; Lei, Jiuhou;

Published by: Science China Earth Sciences      Published on: jan

YEAR: 2022     DOI: 10.1007/s11430-021-9847-9

Forecast; Intelligent optimized particle filter; thermosphere; Uncertain parameters

Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere

We present the ionospheric disturbance responses over low-latitude regions by using total electron content from Geostationary Earth Orbit (GEO) satellites of the BeiDou Navigation Satellite System (BDS), ionosonde data and Swarm satellite data, during the geomagnetic storm in August 2018. The results show that a prominent total electron content (TEC) enhancement over low-latitude regions is observed during the main phase of the storm. There is a persistent TEC increase lasting for about 1–2 days and a moderately positive disturbance response during the recovery phase on 27–28 August, which distinguishes from the general performance of ionospheric TEC in the previous storms. We also find that this phenomenon is a unique local-area disturbance of the ionosphere during the recovery phase of the storm. The enhanced foF2 and hmF2 of the ionospheric F2 layer is observed by SANYA and LEARMONTH ionosonde stations during the recovery phase. The electron density from Swarm satellites shows a strong equatorial ionization anomaly (EIA) crest over the low-latitude area during the main phase of storm, which is simultaneous with the uplift of the ionospheric F2 layer from the SANYA ionosonde. Meanwhile, the thermosphere O/N2 ratio shows a local increase on 27–28 August over low-latitude regions. From the above results, this study suggests that the uplift of F layer height and the enhanced O/N2 ratio are possibly main factors causing the local-area positive disturbance responses during the recovery phase of the storm in August 2018.

Tang, Jun; Gao, Xin; Yang, Dengpan; Zhong, Zhengyu; Huo, Xingliang; Wu, Xuequn;

Published by: Remote Sensing      Published on: jan

YEAR: 2022     DOI: 10.3390/rs14092272

BDS-GEO; differential code biases; geomagnetic storm; Ionospheric disturbance; TEC

Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of solar cycle 24

We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. It is found that the mid-latitudes region has exhibited a large decrease in ∑O/N2 during all the phases of the storms under consideration, which corresponds well to the observed negative storm effects. This decrease is directly related with the storm intensity. The maximum reduction in the ∑O/N2 is observed for the St. Patrick day storm of 2015 (which was the most intense geomagnetic storm of SC-24), whereas the respective minimum decrease is found for the storm of April 2012. Strong hemispheric asymmetries, in ∑O/N2 variation, have been observed at the mid-latitudes sector, and can be associated with the asymmetric energy input as indicated by polar cap (PC) indices. The high speed solar winds streams (HSSWs) during the recovery phases of March 2013 and 2015 storms have caused a significant reduction in ∑O/N2 at mid-latitudes, which could not be reproduced by the coupled thermosphere-ionosphere-plasmasphere electrodynamics (CTIPe) model. On the other hand the low-latitudes region depicts an enhancement in ∑O/N2 during all the storms except for the early recovery phases. The positive storm effect at low-latitudes agrees well with this ∑O/N2 increase, thus indicating that the composition change is one of the major drivers of TEC enhancement at low-latitudes. The CTIPe model showed discrepancies in reproducing the satellite data for all the considered storms, especially during the recovery phases. Furthermore, the model is failed to replicate the hemispheric asymmetries at low and mid-latitudes during the main and early recovery phases.

Younas, Waqar; Khan, Majid; Amory-Mazaudier, C.; Amaechi, Paul; Fleury, R.;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.027

CTIPe model; Disturbed ∑O/N; GUVI/TIMED data; Hemispheric asymmetries; REC

Ionospheric response to the 26 August 2018 geomagnetic storm along 280° E and 316° E in the South American sector

This paper studies the response of the ionospheric parameters critical frequency (foF2), their height (hmF2), and Total Electron Content (TEC) at mid, low, and near-equatorial latitudes of the South American sector during the intense geomagnetic storm of 26 August 2018. The ionospheric response at the beginning of the main phase was different depending on latitude (in general, there were decreases in foF2 at near-equatorial and low latitudes and small increases at mid-latitudes). During the recovery, positive storm effects in foF2 and TEC were observed almost all day on 26 August 2018 overall the stations along all the latitudes and also on 27 August. The initial effects were possibly caused by a weak prompt penetration electric field while the enhanced ratio of thermosphere neutral composition i.e. [O]/[N2] was considered as the main cause for the positive storm effects during the recovery phase.

Mansilla, Gustavo; Zossi, Marta;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.08.002

geomagnetic storm; Ionosphere; South America

Morphologies of ionospheric-equivalent slab-thickness and scale height over equatorial latitude in Africa

Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and DPS in selected quiet periods confirm it to be a first-order measure of Hm over Africa. The seasonal analysis of τ shows substantial enhancement in the magnitude during the post-sunset and solstice seasons, of which December solstice manifests relatively higher values than June solstice. This result could be associated with the elevation of the meridional wind and drift in the parameters, which are more substantial during the post-noon and solstices. Therefore, at solstices, the post-night increase could indicate solar cycle dynamics during HSA (high solar activity) and LSA (low solar activity). However, the extracted Hm from its relationship with τ did not show visible effects of dynamics in E × B plasma drift and the meridional wind. In our study, a decline in morphologies of Hm and τ from December solstice to June solstice through the equinox is not consistent with the existing observations at mid-latitude. The results would complement the relationships between bottomside and topside profile peak parameters and dynamics of ionospheric constituents for a realistic representation and modeling of the ionosphere over African equatorial and low latitude regions. Thus, it also contributes to the global effort of improving ionospheric prediction and forecasting models.

Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola;

Published by: Advances in Space Research      Published on: jan

YEAR: 2022     DOI: 10.1016/j.asr.2021.10.030

Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height

Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017

Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 September 2017 that are associated with the strongest and consecutive solar flares in the 24th solar cycle. The night-time influence of partial ring current signatures in ASYH and the daytime influence of the disturbances in the ionospheric E region electric currents (Diono) are highlighted during the event. The total electron content (TEC) from the latitudinal GNSS observables indicate a perturbed equatorial ionization anomaly (EIA) condition on 7 September, due to a sequence of M-class solar flares and associated prompt penetration electric fields (PPEFs), whereas the suppressed EIA on 8 September with an inverted equatorial electrojet (EEJ) suggests the driving disturbance dynamo electric current (Ddyn) corresponding to disturbance dynamo electric fields (DDEFs) penetration in the E region and additional contributions from the plausible storm-time compositional changes (O/N2) in the F-region. The concurrent analysis of the Diono and EEJ strengths help in identifying the pre-reversal effect (PRE) condition to seed the development of equatorial plasma bubbles (EPBs) during the local evening sector on the storm day. The severity of ionospheric irregularities at different latitudes is revealed from the occurrence rate of the rate of change of TEC index (ROTI) variations. Further, the investigations of the hourly maximum absolute error (MAE) and root mean square error (RMSE) of ROTI from the reference quiet days’ levels and the timestamps of ROTI peak magnitudes substantiate the severity, latitudinal time lag in the peak of irregularity, and poleward expansion of EPBs and associated scintillations. The key findings from this study strengthen the understanding of evolution and the drifting characteristics of plasma irregularities over the Indian low latitudes.

Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi;

Published by: Remote Sensing      Published on: jan

YEAR: 2022     DOI: 10.3390/rs14030652

space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents

The African equatorial ionization anomaly response to the St. Patrick’s Day storms of March 2013 and 2015

The ionosphere around the Equatorial Ionization Anomaly (EIA) region exhibits complex dynamics and responds markedly to the solar-magnetospheric energy and momentum. In this paper, the hourly total electron content (TEC) variations in response to the EIA structure in Africa to the 2013 and 2015 St. Patrick’s Day storms is investigated using data obtained from a chain of GPS receivers located in the Africa region. The TEC variations are characterized based on the convective magnetospheric dynamo fields, neutral wind circulation, and zonal electric fields. Generally, the result indicates that the TEC variations are consistent with the different directions of the interplanetary fields during the different phases of the storms. We observed reverse EIA structures in the main phase of the March 2015 storm, likely to be related to the intense PPEF and strong equatorward wind, which imposed a westward zonal electric field at the equator. A similar equatorial peak observed during the recovery phase is associated with DDEF, poleward wind and plasma convergence. Furthermore, the TEC variations also indicate hemispheric asymmetries during the storms. During the main phase of the storm, the TEC variation is more enhanced in the Northern Hemisphere in March 2013 and reverses during March 2015. We observed an equatorial peak during the SSC period in March 2013, while EIA structures are generally weak in March 2015 event. This posit that ionospheric pre-storm behaviour in the EIA region can be better understood when the IMF-Bz and E-field are not significant. The observed distinctive response avowed the peculiarity of the electrodynamics intricacy in the Africa sector.

Bolaji, Olawale; Adekoya, Bolarinwa; Adebiyi, Shola; Adebesin, Babatunde; Ikubanni, Stephen;

Published by: Astrophysics and Space Science      Published on: jan

YEAR: 2022     DOI: 10.1007/s10509-021-04022-5

TEC; EIA; DDEF; Plasma reversal; PPEF; Pre-storm

Chapter 4 - Energetic particle dynamics, precipitation, and conductivity

This chapter reviews cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system via convection, precipitation, and conductance. It begins with an introduction into Earth’s plasma sheet characteristics including particles, plasma moments, and magnetic fields, and their dependence on solar wind and interplanetary magnetic field parameters. Section 4.2 transitions to observations of the magnetosphere convection, precipitation, and coupling with the ionosphere on multiple scales, with Section 4.3 focusing on related global modeling efforts for particle precipitation. This chapter describes basic concepts and principles of major pitch angle scattering processes—wave-particle interactions and field-line curvature scattering—as well as the resulting precipitation and conductance. Section 4.4 continues the discussion started in 4.2 Observations of multiscale convection, precipitation, and conductivity, 4.3 Simulating particle precipitation of magnetospheric origin in global models regarding the resulting ionosphere conductance, delving more deeply into empirical and data assimilative techniques. This chapter describes techniques used over the years to observe and model precipitation and conductance on multiple scales.

Gabrielse, Christine; Kaeppler, Stephen; Lu, Gang; Wang, Chih-Ping; Yu, Yiqun; Nishimura, Yukitoshi; Verkhoglyadova, Olga; Deng, Yue; Zhang, Shun-Rong;

Published by:       Published on: jan

YEAR: 2022     DOI: 10.1016/B978-0-12-821366-7.00002-0

Conductance; Conductivity; Convection; particle precipitation

Analytic and numerical methods for the Abel transform of exponential functions for planetary and cometary atmospheres

Line-of-sight integration of emissions from planetary and cometary atmospheres is the Abel transform of the emission rate, under the spherical symmetry assumption. Indefinite integrals constructed from the Abel transform integral are useful for implementing remote sensing data analysis methods, such as the numerical inverse Abel transform. We propose analytical expressions obtained by a suitable, non-alternating, series development to compute those indefinite integrals. We establish expressions allowing absolute accuracy control of the convergence of these series and illustrate how this accuracy depends on the number of terms involved in the series computation. We compare the analytical method with numerical computation techniques, which are found to be sufficiently accurate as well. Inverse Abel transform fitting is then tested in order to establish that the expected emission rate profiles can be retrieved from the observation of both planetary and cometary atmospheres. We show that the method is robust, i.e. that it can be applied even when the properties of the observed atmosphere depart from the assumed ones, especially when Tikhonov regularization is included. A first application is conducted over observation of comet 46P/Wirtanen, showing some variability, possibly attributable to an evolution of the contamination by dust and icy grains.

Hubert, B.; Munhoven, G.; Moulane, Y.; Hutsemekers, D.; Manfroid, J.; Opitom, C.; Jehin, E.;

Published by: Icarus      Published on: jan

YEAR: 2022     DOI: 10.1016/j.icarus.2021.114654

Abel transform; Aeronomy; Coma; Cometary atmospheres; Comets; Data reduction techniques; Planetary atmospheres.

Effect of Weak Magnetic Storms on the Propagation of HF Radio Waves

Vertical and oblique sounding data for northeastern Russia have been used to analyze the conditions for the propagation of radio waves during weak geomagnetic storms observed in fall seasons of 2018–2020 at minimal solar activity. Even during weak storms, the maximum observed frequencies have been found to decrease by 25–35\% in daytime and by 40–50\% at night. Variations in the parameters of the distribution of high frequency radio waves during disturbances depend on the spatio-temporal dynamics of large scale structures of the high-latitude ionosphere, which, in turn, depends on the processes of magnetosphere–ionosphere interaction. Here, the depth and duration of the negative disturbance are larger if the geomagnetic storm occurs on a disturbed background.

Kurkin, V.; Polekh, N.; Zolotukhina, N.;

Published by: Geomagnetism and Aeronomy      Published on: feb

YEAR: 2022     DOI: 10.1134/S0016793222020116

Review of in-space plasma diagnostics for studying the Earth s ionosphere

This review details the state of the art in in-space plasma diagnostics for characterizing the Earth’s ionosphere. The review provides a historical perspective, focusing on the last 20 years and on eight of the most commonly used plasma sensors—most of them for in situ probing, many of them with completed/in-progress space missions: (a) Langmuir probes, (b) retarding potential analysers, (c) ion drift meters, (d) Faraday cups, (e) integrated miniaturized electrostatic analysers, (f) multipole resonance probes, (g) Fourier transform infrared spectrometers, and (h) ultraviolet absorption spectrometers. For each sensor, the review covers (a) a succinct description of its principle of operation, (b) highlights of the reported hardware flown/planned to fly in a satellite or that could be put in a CubeSat given that is miniaturized, and (c) a brief description of the space missions that have utilized such sensor and their findings. Finally, the review suggests tentative directions for future research.

Velásquez-García, Luis; Izquierdo-Reyes, Javier; Kim, Hyeonseok;

Published by: Journal of Physics D: Applied Physics      Published on: feb

YEAR: 2022     DOI: 10.1088/1361-6463/ac520a

Bayesian approach for auroral oval reconstruction from ground-based observations

Naked eye observations of aurorae might be used to obtain information on the large-scale magnetic field of the Earth at historic times. Their abundance may also help bridge gaps in observational time-series of proxies for solar activity such as the sunspot number or cosmogenic isotopes. With information derived from aurora observations like observing site, time of aurora sighting and position on the sky we can reconstruct the auroral oval. Since aurorae are correlated with geomagnetic indices like the Kp index, it is possible to obtain information about the terrestrial magnetic field in the form of the position of the magnetic poles as well as the magnetic disturbance level. Here we present a Bayesian approach to reconstruct the auroral oval from ground-based observations by using two different auroral oval models. With this method we can estimate the position of the magnetic poles in corrected geomagnetic coordinates as well as the Kp index. The method is first validated on synthetic observations before it is applied to four modern geomagnetic storms between 2003 and 2017 where ground-based reports and photographs were used to obtain the necessary information. Based on the four modern geomagnetic storms we have shown, that we are able to reconstruct the pole location with an average accuracy of ≈2° in latitude and ≈11° in longitude. The Kp index can be inferred with a precision of one class. The future goal is to employ the method to historical storms, where we expect somewhat higher uncertainties, since observations may be less accurate or not favorably distributed.

Wagner, D.; Neuhäuser, R.; Arlt, R.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: feb

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105824

auroral oval; Magnetic storms; space weather

Responses of Mesosphere and Lower Thermosphere Temperature to the Geomagnetic Storm on 7–8 September 2017

The variations of neutral temperature in the mesosphere and lower thermosphere (MLT) region, during the 7–8 September 2017 intense geomagnetic storm, are studied using observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. They are also studied using simulations by the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM). The neutral temperature data cover the altitudes from 80 km to 110 km between 83° N and 52° S latitude, obtained from both SABER observations and model simulations. The SABER observations reveal that temperature increases (the maximum increase is larger than 35 K at \textasciitilde108 km) and decreases (the maximum decrease is larger than 20 K at \textasciitilde105 km) during the geomagnetic storm. The storm effects penetrate down to \textasciitilde80 km. In observations, temperature variations corresponding to the storm show hemispheric asymmetry. That is, the variations of temperature are more prominent in the northern hemisphere than in the southern hemisphere. Conversely, the TIMEGCM outputs agree with the observations in general but overestimate the temperature increases and underestimate the temperature decreases at high and middle latitudes. Meanwhile, the simulations show stronger temperature decreases and weaker temperature increases than observations at low latitudes. After analyzing the temperature variations, we suggest that vertical winds may play an important role in inducing these significant variations of temperature in the MLT region.

Sun, Meng; Li, Zheng; Li, Jingyuan; Lu, Jianyong; Gu, Chunli; Zhu, Mengbin; Tian, Yufeng;

Published by: Universe      Published on: feb

YEAR: 2022     DOI: 10.3390/universe8020096

geomagnetic storm; temperature; the mesosphere and lower thermosphere (MLT); TIMEGCM

FUV observations of variations in thermospheric composition and topside ionospheric density during the November 2004 magnetic superstorm

We revisited the November 2004 superstorm by analyzing TIMED/GUVI data. The 135.6 nm limb radiances at 520-km are mainly due to the O+ and electron radiative recombination and represent the daytime ionosphere density at the altitude. The 135.6 nm radiances clearly showed a signature of ionospheric equatorial arcs and their variations during the November 2004 magnetic superstorm. When an intense eastward Interplanetary Electric Field (IEF) occurred, the dayside equatorial arcs were enhanced and their latitude separation increased. The enhanced equatorial arcs were hemispherically symmetric or asymmetric in the region with non-depleted O/N2 or hemispherically asymmetric O/N2 depletion, respectively. When O/N2 depletion reached the magnetic equator, there was no observable enhancement in the equatorial arcs regardless the IEF conditions, indicating O/N2 condition significantly modulated the variations in storm-time equatorial arcs. GUVI observations also showed that a westward IEF and/or disturbance dynamo electric field could also suppress the dayside equatorial arcs.

Zhang, Yongliang; Paxton, LarryJ.; Huang, Chaosong; Wang, Wenbin;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: feb

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105832

geomagnetic storm; penetration electric field; Thermosperic composition; topside ionosphere

Distinct ionospheric response to three different geomagnetic storms during 2016 using GPS-TEC observations over the Indian equatorial and low latitude sectors

The ionospheric response during three distinct geomagnetic storms occurred in the year 2016 is investigated using GPS-TEC observations in the Indian equatorial and low latitude sectors. The three geomagnetic storms are considered for this study which were occurred on 20 January 2016 (2230 LT), 6 March 2016 (0230 LT) and 13 October 2016 (0530 LT) with minimum Sym-H values of −95 nT, −110 nT and −114 nT respectively. These three geomagnetic storms are different from one another in the sustainment of main and recovery phases and are occurred at three different local times corresponding to the Indian longitudes. This study brings out the major differences of these three geomagnetic storms characteristics and their distinct effects on the equatorial and low latitude ionosphere. Significant changes in the VTEC during main and recovery phases of these three storms are found to be mainly associated with prompt penetration electric fields and thermospheric neutral compositional changes. During the storm of 20 January 2016, positive storm effects during main and recovery phases of the storm are in association with the penetration electric fields. The complete main phase for the 6 March 2016 geomagnetic storm was occurred during night time and no changes in VTEC has been identified, which could be due to the weak background electron density. A positive storm effect is noticed during the recovery phases of the storms of 6 March 2016 and 13 October 2016, due to the storm induced electric fields differences and in particular due to the enhanced [O]/[N2] ratio in thermospheric composition. A strong positive storm effect caused by Co-rotating Interacting Region (CIR) induced disturbances after the 13 October 2016 storm is also discussed.

Lissa, D.; Venkatesh, K.; Prasad, D.; Niranjan, K.;

Published by: Advances in Space Research      Published on: aug

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.027

Disturbance Dynamo; Geomagnetic storms; Positive Storm Effect; Prompt Penetration Electric Fields (PPEF); Total electron content (TEC)

Investigation of the negative ionospheric response of the 8 September 2017 geomagnetic storm over the European sector

In this study, we investigate the negative ionospheric response over the European sector during two storms that took place on 8 September 2017, primarily, by exploiting observations over ten European locations. The spatial and temporal variations of TEC, foF2 and hmF2 ionospheric characteristics are examined with the aim to explain the physical mechanisms underlying the strong negative ionospheric response. We detected very sharp electron density (in terms of foF2 and TEC) decrease during the main phases of the two storms and we attributed this phenomenon to the large displacement of the Midlatitude Ionospheric Trough (MIT). Our study also revealed that the two storms show different features caused by different processes. In addition, Large Scale Traveling Ionospheric Disturbances (LSTIDs) were observed during both storms, followed by enhanced Spread F conditions over Digisonde stations. The regional dependence of ionospheric storm effects was demonstrated, as the behavior of ionospheric effects over the northern part of Europe differed from that over the southern part.

Oikonomou, Christina; Haralambous, Haris; Paul, Ashik; Ray, Sarbany; Alfonsi, Lucilla; Cesaroni, Claudio; Sur, Dibyendu;

Published by: Advances in Space Research      Published on: aug

YEAR: 2022     DOI: 10.1016/j.asr.2022.05.035

Large-scale traveling ionospheric disturbances; Mid-latitude ionospheric trough; September 2017 geomagnetic storm; Swarm satellite

Optomechanical design of a wide-field auroral imager on Fengyun-3D

We present the optomechanical design and development of a wide-field auroral imager (WAI) on board the satellite Fengyun-3D. The optomechanical system of the WAI features a combination of a large field of view and a single-axis scanning mechanism. The combination makes the WAI perform better than its counterparts in temporal resolution in a low Earth orbit. In-orbit tests have verified the survival of WAI in the launching vibration and space environment. It has functioned on-orbit since 2018, with a spatial resolution of ∼10km at the nadir point, at a reference height of 110 km above the ionosphere.

Guo, Quanfeng; Chen, Bo; Liu, ShiJie; Song, KeFei; He, LingPing; He, Fei; Zhao, Weiguo; Wang, Zhongsu; Chen, Liheng; Shi, Guangwei;

Published by: Applied Optics      Published on: apr

YEAR: 2022     DOI: 10.1364/AO.453949

Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015

Using observations by the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on board the TIMED (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics) satellite and simulations by the TIEGCM (Thermosphere-Ionosphere-Electrodynamics General Circulation Model), we investigate the daytime variations of thermospheric nitric oxide (NO) cooling during the geomagnetic storm on 6 May 2015. The geomagnetic storm was minor, as the minimum Dst was −28 nT, the maximum Kp was 5+ and the maximum AE was 1259 nT. However, significant enhancements of peak NO cooling rate and prominent decreases in the peak NO cooling altitude were observed from high latitudes to low latitudes in both hemispheres on the dayside by the SABER instrument. The model simulations underestimate the response of peak NO cooling and have no significant variation of the altitude of peak NO cooling rate on the dayside during this minor geomagnetic storm. By investigating the temporal and latitudinal variations of vertical NO cooling profiles inferred from SABER data, we suggest that the horizontal equatorward winds caused by the minor geomagnetic storm were unexpectedly strong and thus play an important role in inducing these significant daytime NO cooling variations.

Li, Zheng; Sun, Meng; Li, Jingyuan; Zhang, Kedeng; Zhang, Hua; Xu, Xiaojun; Zhao, Xinhua;

Published by: Universe      Published on: apr

YEAR: 2022     DOI: 10.3390/universe8040236

geomagnetic storm; thermosphere; nitric oxide cooling

Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm

During emergency events, we could significantly depend on the stable operation of radio communication, navigation, and radars. The ionosphere, especially its auroral regions

Edemskiy, Ilya; Yasyukevich, Yury;

Published by: Remote Sensing      Published on:

YEAR: 2022     DOI: 10.3390/rs14215486

Seasonal Variation of Thermospheric Composition Observed by NASA GOLD

We examine characteristics of the seasonal variation of thermospheric composition using column number density ratio ∑O/N2 observed by the NASA Global Observations of Limb and Disk (GOLD) mission from low-mid to mid-high latitudes. We also use ∑O/N2 derived from the Global Ultraviolet Imager (GUVI) limb measurements onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and estimated by the NRLMSISE-00 empirical model to aid our investigation. We found that the ∑O/N2 seasonal variation is hemispherically asymmetric: in the southern hemisphere, it exhibits the well-known annual and semiannual pattern, with highs near the equinoxes, and primary and secondary lows near the solstices. In the northern hemisphere, it is dominated by an annual variation, with a minor semiannual component with the highs shifting toward the wintertime. We also found that the durations of the December and June solstice seasons in terms of ∑O/N2 are highly variable with longitude. Our hypothesis is that ion-neutral collisional heating in the equatorial ionization anomaly region, ion drag, and auroral Joule heating play substantial roles in this longitudinal dependency. Finally, the rate of change in ∑O/N2 from one solstice season to the other is dependent on latitude, with more dramatic changes at higher latitudes.

Qian, Liying; Gan, Quan; Wang, Wenbin; Cai, Xuguang; Eastes, Richard; Yue, Jia;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030496

annual variation; GOLD observation; MSIS; seasonal variation; semiannual variation; thermosphere composition

Review of in-space plasma diagnostics for studying the Earth’s ionosphere

This review details the state of the art in in-space plasma diagnostics for characterizing the Earth s ionosphere. The review provides a historical perspective, focusing on the last 20

ia, Luis; Izquierdo-Reyes, Javier; Kim, Hyeonseok;

Published by: Journal of Physics D: Applied Physics      Published on:

YEAR: 2022     DOI: 10.1088/1361-6463/ac520a

Performance Analysis of Ionospheric TECmodelsoverthe Africanregion during the geomagnetic storm of March 2015

This paper investigates the diurnal variations of modelled and observed Vertical Total Electron Content (VTEC) over the African region (40oN to+ 40oS, 25oW to 65oE) obtained from

Devanaboyina, Venkata; , others;

Published by:       Published on:

YEAR: 2022     DOI: 10.21203/

New Approaches for Quantifying and Understanding Thermosphere Temperature Variability from Far Ultraviolet Dayglow

The nonlinear and dynamic response of Earth’s thermosphere, and the embedded ionosphere, to highly variable forcing from the Sun and from the lower atmosphere is not completely

Cantrall, Clayton;

Published by:       Published on:

YEAR: 2022     DOI:

Ionospheric response of St. Patrick’s Day geomagnetic storm over Indian low latitude regions

The current work shows the ionospheric response to an intense geomagnetic storm known as St. Patrick’s Day storm which occurred from 17-22 March 2015 using the ionospheric

Chaurasiya, Sunil; Patel, Kalpana; Kumar, Sanjay; Singh, Abhay;

Published by: Astrophysics and Space Science      Published on:

YEAR: 2022     DOI: 10.1007/s10509-022-04137-3

Study of ionospheric total electron content and its numerical estimation during several geomagnetic storms in the 24 solar cycle

We present the ionospheric response of geomagnetic storms as observed from ionospheric Total Electron Content (TEC). We select nine storm events and study the GPS-TEC profiles

Kundu, Subrata; Sasmal, Sudipta;

Published by:       Published on:

YEAR: 2022     DOI: 10.21203/

Multiresolution Data Assimilation for Auroral Energy Flux and Mean Energy Using DMSP SSUSI, THEMIS ASI, and An Empirical Model

We apply a multiresolution Gaussian process model (Lattice Kriging) to combine satellite observations, ground‐based observations, and an empirical auroral model, to produce the

Wu, Haonan; Tan, Xiyan; Zhang, Qiong; Huang, Whitney; Lu, Xian; Nishimura, Yukitoshi; Zhang, Yongliang;

Published by: Space Weather      Published on:

YEAR: 2022     DOI: 10.1029/2022SW003146

Importance of lower atmospheric forcing and magnetosphere-ionosphere coupling in simulating neutral density during the February 2016 geomagnetic storm

During geomagnetic storms a large amount of energy is transferred into the ionosphere-thermosphere (IT) system, leading to local and global changes in eg, the dynamics, composition

Maute, Astrid; Lu, Gang; Knipp, Delores; Anderson, Brian; Vines, Sarah;

Published by: Frontiers in Astronomy and Space Sciences      Published on:

YEAR: 2022     DOI: 10.3389/fspas.2022.932748

Neutral composition information in ICON EUV dayglow observations

Since the earliest space‐based observations of Earth s atmosphere, ultraviolet (UV) airglow has proven a useful resource for remote sensing of the ionosphere and thermosphere. The

Tuminello, Richard; England, Scott; Sirk, Martin; Meier, Robert; Stephan, Andrew; Korpela, Eric; Immel, Thomas; Mende, Stephen; Frey, Harald;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030592

The Role of High Energy Photoelectrons on the Dissociation of Molecular Nitrogen in Earth's Ionosphere

Soft x-ray radiation from the sun is responsible for the production of high energy photoelectrons in the D and E regions of the ionosphere, where they deposit most of their ionization

Samaddar, Srimoyee; Venkataramani, Karthik; Yonker, Justin; Bailey, Scott; , others;

Published by: arXiv preprint arXiv:2209.11185      Published on:

YEAR: 2022     DOI: 10.48550/arXiv.2209.11185

Occurrence of Ionospheric irregularities over Brazil and Africa during the 2019 Antarctic minor sudden stratospheric warming

The influence of sudden stratospheric warming (SSW) on the ionosphere and ionospheric irregularities has been studied extensively over the years. However, majority of these

Agyei-Yeboah, Ebenezer; Fagundes, Paulo; Tardelli, Alexandre; Pillat, Valdir; Vieira, Francisco; Arcanjo, Mateus;

Published by: Advances in Space Research      Published on:

YEAR: 2022     DOI: 10.1016/j.asr.2022.08.065

Spatial-Temporal Behaviors of Large-Scale Ionospheric Perturbations During Severe Geomagnetic Storms on September 7—8 2017 Using the GNSS, SWARM and TIE-GCM Techniques

Geomagnetic storms on 7–8 September 2017 triggered severe ionospheric disturbances that had a serious effect on satellite navigation and radio communication. Multiple observations

Li, Wang; Zhao, Dongsheng; He, Changyong; Hancock, Craig; Shen, Yi; Zhang, Kefei;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029830

Validation of in-situ ionospheric density using FORMOSAT-7/COSMIC-2 IVM and ICON IVM

We investigate the validation of in-situ ion density measurements by the ion velocity meter (IVM) onboard F7/C2 and ICON, respectively, during the solar minimum condition of

Choi, Jong-Min; Lin, Charles; Rajesh, PK; Park, Jaeheung; Kwak, Young-Sil; Chen, Shih-Ping; Lin, Jia-Ting;

Published by:       Published on:

YEAR: 2022     DOI: 10.21203/

Simultaneous Detection of Signatures of Conjugate Photoelectrons in the Ionosphere and Thermosphere

We investigate the impact of conjugate photoelectrons (CPEs) on the topside (∼600 km altitude) ionosphere at low and midlatitudes using measurements of the ion temperature, density, and composition from the first Republic of China satellite during a period of the high to moderate solar activity (March 1999 to June 2004). Elevated ion temperatures and densities are observed in the dark Northern American-Atlantic sector during the December solstice and in the Australian sector during the June solstice. The oxygen ion fraction and density are also elevated at these locations. These observations indicate that photoelectrons from the conjugate hemisphere heat the local ionospheric plasma. The morphology of the ion temperature in the winter hemisphere is well represented by the solar zenith angle in the sunlit conjugate hemisphere. The CPE hypothesis for the observed ionospheric heating is confirmed by coincident nighttime enhancements of the far ultraviolet airglow measured by the Global Ultraviolet Imager onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite.

Kil, Hyosub; Paxton, Larry; Schaefer, Robert;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA030121

airglow; conjugate photoelectron; ion density; ion temperature

  1      2      3      4      5      6