Calibration Algorithm

Dr. Larry J. Paxton
JHU/APL
240 228 6871
240 228 6670 fax
larry.paxton@jhuapl.edu

Purpose

- The calibration algorithm is assumed to take the measured values and convert them into an instrument-independent form.
- Discussion here will be captured in a Language Independent Description (LID) for review.
 - Design will be formalized for the CDR

Requirements

The algorithm must be capable of producing values for each of the five colors that are corrected for backgrounds, data compression, detector non-linearities, variations in flat fielding, etc. and instrument dependent parameters i.e. choice of detector, slit, mirror scan angle, detector high voltage, etc.

Calibration Product

- The calibration algorithm will provide the binning algorithm with the correction to each individual pixel so that it can be accurately added to produce a gridded superpixel value.
- The calibration algorithm also prepares the data tables for the look-up process used to determine the environmental parameters.

Count Rate Correction

- There are two major corrections that occur
 - decompression of the data
 - detector non-linearity

Detector Non-linearity

- The GUVI detector throughput depends on the input rate.
- The true input rate is measured at the output of the detector's intensifier.
- The input rate output rate is approximately linear to about 100,000 counts s⁻¹
- Above 200,000 counts s-1 input rate the output rate is nearly constant

Backgrounds

- Instrumental backgrounds in the five colors consists of three sources
 - dark counts (thermionic emission, cosmic rays, etc.)
 - scattered light
- Backgrounds are determined from dedicated command-locatable pixels

Dark Count Rate

- The dark count rate is estimated during normal operations by using measurements of dedicated dark count rate pixels to adjust the dark count rate "scattering mask"
 - we use scattering mask to denote the functional dependence of any background component

Mapping Dark Count Rate

- The dark count rate is modeled by using observations in the closed slit position to determine the spatial distribution of dark events
 - we may use nightside and near twilight passes for this sequence
 - need relatively long exposure times to build up and accurate "mask"
 - typical rates are about 30 c s⁻¹ over the entire tube

Scattered Light

- There are two major components of scattered light within the instrument
 - in band scattering (Lyman alpha and OI 1304
 - out of band scattering red leak

Correction for In-band Scatter

- The current ruled grating exhibits a significant amount of grating scatter inband.
- The functional form of this scatter has been mapped.
 - The functional dependence of the scattering from the new holographic grating will also be mapped.

In-band Scatter

- From knowledge of the functional dependence the contribution at every wavelength pixel (and spatial pixel) can be determined.
 - Spatial dependence is nearly non-existent.
- New algorithm will solve a set of coupled linear equations to produce the "true" observed intensity at each of the five colors.

Out-of-band Scatter

- Out-of-band scatter was a completely unexpected problem for SSUSI.
- Original measurements of the contribution were attributed to problems in the OCF.
 - Revised collection sequences demonstrated that SSUSI was seeing internal out-of-band light
 - we are procuring new detectors and a better grating to manage this problem

"Red" Leak

- The out-of-band scatter arises from the rapid rise in the Earth radiance at 200nm and near 300nm.
 - Relative contribution depends on the quantum efficiency of the photocathode and the amount of scatter from the grating.
 - "red" component is imaged so it comes from the grating not internal scatter

Correcting for "red" leak

- The correction for the red-leak is carried out in the same way that the grating scatter is corrected for:
 - dedicate pixels are monitored
- These pixels are at the short wavelength end of the detector where only scattered light will fall
 - contribution from in-band scattering is negligible (but could be modelled)

Correction Approach

- Dedicated "pixels" are monitored seven times on each scan for each of three segments in the along track direction to provide the points used for a model of the backscattered MUV light.
 - MODTRAN runs show that the 200 nm region responds weakly to the variation in ozone and aerosols and not at all to ground albedo or clouds.

Preparation for Binning

- The data are first binned as a function of along orbit angle (α) and cross-scan angle (β).
 - In order to co-add the contributions from individual spatial pixels the variation in responsivity has to be accounted for.
 - This will be a change in the calibration algorithm and in the way that the data tables are formed.

Responsivity

Responsivity is determined as a function of mirror angle, spatial pixel, slit, detector and wavelength.

Spatial Pixel Dependence

 Spatial dependence of pixel response will alter the measured value in a superpixel

Spatial Pixel Linearity

Responsivity is scaled to a

> reference shape.

Scan-Mirror Angle Dependence

- The responsivity changes for scanmirror angle.
 - Corrected for in binning by scaling a reference dependence
 - Binning algorithm
 "knows" the scan angle

Color Definitions

- Due to bandwidth limitations GUVI sends down five "colors":
 - Lyman alpha, OI 1304, OI 1356, LBH1 (145)
 - 160 nm) and LBH 2 (165 180 nm)
- Color definitions in focal plane space are used to define the extent of the spectrum that is actually downlinked in these co-added bands

Reported Intensities

- The downlinked values are in counts but users prefer "Rayleighs"
- The algorithms will produce calibrated SDRs in Rayleighs by locating the "best" match spectrum and returning the corresponding geophysical parameter
 - for each determined geophysical parameter a spectrum in the database was located
 - the returned intensity and its error bar will be in Rayleighs which represents this value

Calibration of Spectrograph Mode Data

- 168 wavelength pixels are downlinked in the spectral mode every 3 s.
- Calibration algorithm takes the observed spectrum and adjusts the observed spectrum to R/pixel.
- Five color binning can be testing in spectrograph mode.
- On-orbit calibration will provide a measure of the absolute radiometric calibration.

On-orbit Calibration

- On-orbit calibration will be achieved using bright hot stars.
 - summarized in GUVI Calibration and Characterization Plan
 - see CDR and PDR presentations
- Stars enable calibration over range from 20 c s⁻¹ to 200,000 c s⁻¹.
- Accuracy goal is 8%.
 - Many stellar sources are known to about ±3%.

Changes in Instrument Responsivity

- The instrument responsivity will change over time at a rate proportional to the total charge extracted at the location of bright lines.
 - changes will occur in the pulse height distribution
 - adjusted for by changing the voltage across the tube

Pulse Height Distribution

- The pulse height distribution (PHD) is monitored continuously
 - we have requested an increase in the GUVI data rate to accommodate this
 - the GUVI FPE design has been changed to allow more of the PHD to be analyzed
 - SSUSI could see about 75% of the distribution
 - GUVI sees about 95%
 - see GUVI CDR package for details

Summary

- Calibration algorithm takes allows the science algorithm to accurately determine the "best" fit to the observations
 - designed to mimic how the instrument responds to the upwelling radiation from the atmosphere
 - uses databases of intensities which are functions of geophysical parameters