GUVI Structural Analysis

D. F. Persons
JHU/APL
301-953-5880
DAVID.PERSONS@JHUAPL.EDU

GUVI Mechanical Design Requirements

Reference: SEM-2-1450 Rev B, 7/19/96, 'TIMED Structural Design and Test Requirements'.

Quasi-Static Limit Loads (G):

All Assemblies: + 30 G's [Loads applied separately at assy c.g. in 3 orthogonal axes]

Design Loads:

Mat'L Yield = 1.4 X Max Expected Load

Mat'L Ultimate = 1.875 X Max Expected Load

Stiffness: > 50 Hz Lateral; > 80 Hz Thrust (for a Taurus launch)

OperationalTemperatures: +50 C to -40 C

Pressure Change: < 0.5 psi/sec.

Mass: < 19.3 Kg.

Redundant Load Paths, Non-Critical Fasteners.

Low Outgassing, Low SCC Materials.

Alignment:

Boresight alignment accuracy: 1.0 deg.

Boresight alignment knowledge: 0.05 deg.

2 year lifetime.

GUVI Structural Analysis Issues

Mounting Foot: (SSG)

- Revised foot geometry must have stress check for positive MS.
- GUVI Fn > 50 Hz lateral, 80 Hz in thrust if Taurus LV.

Scan Mirror Assembly: (SSG)

- Time to complete single scan reduced from 22 sec to 15 sec.
- Increased gear tooth contact stresses vs reduced number of scan cycles.
 SSUSI lifetime: 7.17E6 cycles; GUVI lifetime: 4.2E6 cycles.
- Possible increase in settling time per step.

Cover Deployment: (SSG)

- Increase sunshade-to-cover clearances.
- Possible revision of pinpuller design to eliminate performance deterioration seen during NEAR NIS testing.

Detector Tube Assembly: (APL)

 Removal of HV Bias boards from potted assembly and revision of tube lead routing and attachment.

GUVI Mechanical Test Plan

Final SSUSI Unit:

 Run scan mirror at higher GUVI rate to evaluate settling time per step.

Spare GUVI Detector Tube:

- Thermal cycle testing of new lead routing and stress relief.
- 3 axis sine and random vibration attached to SIS mass model to evaluate HV Bias board changes and new lead attachments.

GUVI Flight Unit:

- 100 hr. minimum run-in test of scan assembly to smooth out gearbox and journal bearing torques.
- Baseline cover door deployment test.
- Sine and random vibration.
- Powered thermal vacuum test.
- Cover door TV deployment test (performed during cold cycle).

GUVI vs SSUSI Component Vibration Tests

Protoflight Sine Tests

TIMED/GUVI

SSUSI

Sine Sweep:

Thrust Axis

Frequency (Hz) Acceleration (G's)

> 5 - 24 0.5 in. (DA)

24 - 80 15.5 G (0 to pk)

80 - 100 2.0 G (0 to pk)

Rate = 4 octaves/min

Lateral Axes

Frequency (Hz) Acceleration (G's)

> 5 - 18 0.5 in. (DA)

18 - 30 8.5 G (0 to pk)

30 - 100 1.4 G (0 to pk)

Rate = 4 octaves/min

Sine Burst:

Frequency (Hz) Acceleration (G's)

25

25.0 G's Pk

Duration: 10 cycles/axis

3 Axes

GUVI vs SSUSI Component Vibration Tests

Protoflight Random Test

TIMED/GUVI

<u>SSUSI</u>

Freq (Hz)	PSD (G2/Hz)	Freq (Hz)	PSD (G2/Hz)
20	0.026	10 - 50	0.06
50-800	0.16	250 - 1000	0.20
2000	0.026	2000	0.06

Overall: 14.1 Grms

1 min/axis

3 Axes

Overall: 17.0 Grms

3 min/axis

3 Axes