GUVI Biblio




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





A new technique for remote sensing of O 2 density from 140 to 180 km



AuthorHecht, James; Christensen, Andrew; Yee, Jeng-Hwa; Crowley, Geoff; Bishop, Rebeeca; Budzien, Scott; Stephan, Andrew; Evans, Scott;
Keywordscomposition; technique; thermosphere
Abstract

Observations of molecular oxygen are difficult to make in the Earth\textquoterights atmosphere between 140 and 200 km altitude. Perhaps the most accurate measurements to date have been obtained from satellite instruments that measure solar occultations of the limb. These do provide height-resolved O2 density measurements, but the nature of this technique is such that the temporal/spatial distribution of the measurements is uneven. Here a new space-based technique is described that utilizes two bright dayglow emissions, the (0,0) transition of the O2 atmospheric band and the O I (630 nm), to derive the height-resolved O2 density from 140 to 180 km. Data from the Remote Atmospheric and Ionospheric Detection System, which was placed on the International Space Station in late 2009, are used to illustrate this technique. The O2 density results for periods in May 2010 that were geomagnetically quiet and disturbed are compared to model predictions.

Year of Publication2015
JournalGeophysical Research Letters
Volume42
Number of Pages233-240
Section
Date Published01/2015
ISBN
URLhttp://doi.wiley.com/10.1002/2014GL062355
DOI10.1002/2014GL062355