GUVI Biblio


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 6 entries in the Bibliography.

Showing entries from 1 through 6


FUV observations of variations in thermospheric composition and topside ionospheric density during the November 2004 magnetic superstorm

We revisited the November 2004 superstorm by analyzing TIMED/GUVI data. The 135.6 nm limb radiances at 520-km are mainly due to the O+ and electron radiative recombination and represent the daytime ionosphere density at the altitude. The 135.6 nm radiances clearly showed a signature of ionospheric equatorial arcs and their variations during the November 2004 magnetic superstorm. When an intense eastward Interplanetary Electric Field (IEF) occurred, the dayside equatorial arcs were enhanced and their latitude separation inc ...

Zhang, Yongliang; Paxton, LarryJ.; Huang, Chaosong; Wang, Wenbin;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: feb

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105832

geomagnetic storm; penetration electric field; Thermosperic composition; topside ionosphere

Diurnal and Seasonal Characteristics of the Longitudinal Variations of Electron Densities in the Topside Ionosphere at Middle Latitudes

The ionosphere experiences strong diurnal and seasonal changes. The longitudinal variations of electron density (Ne) in the ionosphere at the middle latitudes also show strong diurnal and seasonal changes. In this paper, we use in situ Ne measurements from the DEMETER satellite and electron density profiles retrieved from the COSMIC data to study the local time (LT) and seasonal dependence of the longitudinal variations of topside Ne at middle latitudes during 2007–2009. With regard to the diurnal trend, the reversal phase ...

Su, Fanfan; Wang, Wenbin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030308

Electron density; middle latitude; season; topside ionosphere


The Ionosphere at Middle and Low Latitudes Under Geomagnetic Quiet Time of December 2019

The ionospheric electron density shows remarkable day-to-day variability due to solar radiance, geomagnetic activity and lower atmosphere forcing. In this report, we investigated the ionospheric variations at middle and low latitudes during a period under geomagnetic quiet time (Kpmax = 1.7) from November 30 to December 8, 2019. During the quiescent period, the ionosphere is not undisturbed as expected in the Asian-Australian and the American sectors. Total electron content (TEC) has multiple prominent enhancements at middle ...

Kuai, Jiawei; Li, Qiaoling; Zhong, Jiahao; Zhou, Xu; Liu, Libo; Yoshikawa, Akimasa; Hu, Lianhuan; Xie, Haiyong; Huang, Chaoyan; Yu, Xumin; Wan, Xin; Cui, Jun;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028964

low-latitude electric fields; the ionosphere variations in solar minimum; the ionospheric day-to-day variations; the ionospheric disturbance; the ionospheric variations; topside ionosphere


The responses of ionospheric topside diffusive fluxes to two geomagnetic storms in October 2002

O+ field-aligned ambipolar diffusive velocities Vd and fluxes Фd in the topside ionosphere have been calculated from the observed profiles of electron density, ion, and electron temperatures during a 30 day incoherent scatter radar experiment conducted at Millstone Hill (288.5\textdegreeE, 42.6\textdegreeN) from 4 October to 4 November 2002. Two geomagnetic storms took place during this period. During the negative phases (depleted electron densities) of these two storms, ...

Chen, Guang-Ming; Xu, JiYao; Wang, Wenbin; Lei, Jiuhou; Zhang, Shun-Rong;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014JA020013

diffusion; geomagnetic storm; scale height; topside ionosphere


The Ionospheric Bubble Index deduced from magnetic field and plasma observations onboard Swarm

In the post-sunset tropical ionospheric F-region plasma density often exhibits depletions, which are usually called equatorial plasma bubbles (EPBs). In this paper we give an overview of the Swarm Level 2 Ionospheric Bubble Index (IBI), which is a standard scientific data of the Swarm mission. This product called L2-IBI is generated from magnetic field and plasma observations onboard Swarm, and gives information as to whether a Swarm magnetic field observation is affected by EPBs. We validate the performance of the L2-IBI ...

Park, J.; Noja, M.; Stolle, C.; Lühr, H.;

Published by: Earth, Planets and Space      Published on: 11/2014

YEAR: 2013     DOI: 10.5047/eps.2013.08.005

Equatorial ionosphere; Plasma irregularity; topside ionosphere


Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method\textquoterights performance at mid-latitudes daytime hours

A new method has been developed to retrieve neutral temperature Tn and composition [O], [N2], [O2] from electron density profiles in the daytime mid-latitude F2-region under both quiet and disturbed conditions. A comparison with CHAMP neutral gas density observations in the vicinity of Millstone Hill Incoherent Scatter Radar (ISR) has shown that the retrieved neutral gas densities coincide with the observed ones within the announced accuracy of CHAMP observatio ...

Mikhailov, A.V.; Belehaki, A.; Perrone, L.; Zolesi, B.; Tsagouri, I.;

Published by: Journal of Space Weather and Space Climate      Published on: 06/2012

YEAR: 2012     DOI: 10.1051/swsc/2012002

ionosphere/atmosphere interactions; ionosphere: instruments; Ionospheric storms; techniques; thermospheric dynamics; topside ionosphere