Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2022 |
The variations of neutral temperature in the mesosphere and lower thermosphere (MLT) region, during the 7–8 September 2017 intense geomagnetic storm, are studied using observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. They are also studied using simulations by the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM). The neutral temperature data cove ... Sun, Meng; Li, Zheng; Li, Jingyuan; Lu, Jianyong; Gu, Chunli; Zhu, Mengbin; Tian, Yufeng; Published by: Universe Published on: feb YEAR: 2022   DOI: 10.3390/universe8020096 geomagnetic storm; temperature; the mesosphere and lower thermosphere (MLT); TIMEGCM |
2021 |
The global-scale observations of the limb and disk (GOLD) Mission images middle thermosphere temperature and the vertical column density ratio of oxygen to molecular nitrogen (O/N2) using its far ultraviolet imaging spectrographs in geostationary orbit. Since GOLD only measures these quantities during daylight, and only over the ∼140° of longitude visible from geostationary orbit, previously developed tidal analysis techniques cannot be applied to the GOLD data set. This paper presents a novel approach that deduces two sp ... Krier, Christopher; England, Scott; Greer, Katelynn; Evans, Scott; Burns, Alan; Eastes, Richard; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2021   DOI: 10.1029/2021JA029563 |
2012 |
This paper presents remotely sensed neutral temperatures obtained from ultraviolet observations and compares them with temperatures from the NRLMSISE-00 version of the Mass Spectrometer and Incoherent Scatter (MSIS) model (unconstrained and constrained to match the total densities from satellite drag). Latitudinal profiles of the temperatures in the Earth\textquoterights thermosphere are obtained by inversion of high-resolution (\~1.3\ \r A) observations of the (1,1) and (5,4) Lyman-Birge-Hopfield (LBH) bands of N Krywonos, Andrey; Murray, D.; Eastes, R.; Aksnes, A.; Budzien, S.; Daniell, R.; Published by: Journal of Geophysical Research Published on: 09/2012 YEAR: 2012   DOI: 10.1029/2011JA017226 airglow; N2; remote sensing; satellite drag; temperature; thermosphere |
The Wind Imaging Interferometer (WINDII) was launched on the NASA\textquoterights Upper Atmosphere Research Satellite on 12 September 1991 and operated until 2003. Its role in the mission was to measure vector winds in the Earth\textquoterights atmosphere from 80 to 110 km, but its measurements extended to nearly 300 km. The approach employed was to measure Doppler shifts from a suite of visible region airglow lines emitted over this altitude range. These included atomic oxygen O(1S) and O(1D) lines, ... Shepherd, G.; Thuillier, G.; Cho, Y.-M.; Duboin, M.-L.; Evans, W.; Gault, W.; Hersom, C.; Kendall, D.; Lathuillère, C.; Lowe, R.; McDade, I.; Rochon, Y.; Shepherd, M.; Solheim, B.; Wang, D.-Y.; Ward, W.; Published by: Reviews of Geophysics Published on: 06/2012 YEAR: 2012   DOI: 10.1029/2012RG000390 airglow; dynamics; interferometers; mesosphere; temperature; winds |
1