GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 3 entries in the Bibliography.


Showing entries from 1 through 3


2015

Explaining solar cycle effects on composition as it relates to the winter anomaly

The solar cycle variation of\ F2\ region winter anomaly is related to solar cycle changes in the latitudinal winter-to-summer difference of O/N2. Here we use the National Center for Atmospheric Research\textendashGlobal Mean Model to develop a concept of why the latitudinal winter-to-summer difference of O/N2\ varies with solar cycle. The main driver for these seasonal changes in composition is vertical advection, which is expressed most simply in pressure coordinat ...

Burns, A.; Solomon, S.; Wang, W.; Qian, L.; Zhang, Y.; Paxton, L.; Yue, X.; Thayer, J.; Liu, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021220

composition; solar cycle; upper atmosphere

2013

Solar cycle dependence of the seasonal variation of auroral hemispheric power

Although much has been done on the hemispheric asymmetry (or seasonal variations) of auroral hemispheric power (HP), the dependence of HP hemispheric asymmetry on solar cycle has not yet been studied. We have analyzed data during 1979\textendash2010 and investigated the dependence of HP hemispheric asymmetry/seasonal variation for the whole solar cycle. Here we show that (1) the hemispheric asymmetry of HP is positively correlated to the value of solar F10.7 with some time delay; (2) it is closely related to the coupling ...

Zheng, Ling; Fu, SuiYan; Zong, QuiGang; Parks, George; Wang, Chi; Chen, Xi;

Published by: Chinese Science Bulletin      Published on: 02/2013

YEAR: 2013     DOI: 10.1007/s11434-012-5378-6

auroral power; coupling function; hemispheric asymmetry; precipitation; solar cycle

2012

Recent Progresses on Ionospheric Climatology Investigations

The ionosphere varies over multiple time scales, which are classified into two categories: the climatology and weather variations. In this national report, we give a brief summary of recent progresses in ionospheric climatology with focus on (1) the seasonal variations, (2) solar cycle effects, and (3) empirical modeling of the ionosphere. The seasonal variations of the ionosphere have been explored in many works to give a more detailed picture with regional and global features at various altitudes by analyzing the obse ...

Liu, L.; Le, H.; Zhao, B.;

Published by: Chin. J. Space Sci.      Published on:

YEAR: 2012     DOI:

Climatological variation; Ionosphere; Ionospheric modeling; Seasonal variations; solar cycle



  1