Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2020 |
Real-Time Thermospheric Density Estimation via Two-Line Element Data Assimilation Inaccurate estimates of the thermospheric density are a major source of error in low Earth orbit prediction. Therefore, real-time density estimation is required to improve orbit prediction. In this work, we develop a dynamic reduced-order model for the thermospheric density that enables real-time density estimation using two-line element (TLE) data. For this, the global thermospheric density is represented by the main spatial modes of the atmosphere and a time-varying low-dimensional state and a linear ... Gondelach, David; Linares, Richard; Published by: Space Weather Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019SW002356 density estimation; reduced-order modeling; satellite drag; thermospheric density modeling; two-line element data |
2015 |
Seasonal variability in global eddy diffusion and the effect on neutral density We describe a method for making single-satellite estimates of the seasonal variability in global-average eddy diffusion coefficients. Eddy diffusion values as a function of time were estimated from residuals of neutral density measurements made by the Challenging Minisatellite Payload (CHAMP) and simulations made using the thermosphere-ionosphere-mesosphere electrodynamics global circulation model (TIME-GCM). The eddy diffusion coefficient results are quantitatively consistent with previous estimates based on satellite dr ... Published by: Journal of Geophysical Research: Space Physics Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2015JA021084 annual; eddy diffusion; neutral density; satellite drag; seasonal variability; semiannual |
2012 |
This paper presents remotely sensed neutral temperatures obtained from ultraviolet observations and compares them with temperatures from the NRLMSISE-00 version of the Mass Spectrometer and Incoherent Scatter (MSIS) model (unconstrained and constrained to match the total densities from satellite drag). Latitudinal profiles of the temperatures in the Earth\textquoterights thermosphere are obtained by inversion of high-resolution (\~1.3\ \r A) observations of the (1,1) and (5,4) Lyman-Birge-Hopfield (LBH) bands of N Krywonos, Andrey; Murray, D.; Eastes, R.; Aksnes, A.; Budzien, S.; Daniell, R.; Published by: Journal of Geophysical Research Published on: 09/2012 YEAR: 2012   DOI: 10.1029/2011JA017226 airglow; N2; remote sensing; satellite drag; temperature; thermosphere |
2008 |
Use of two-line element data for thermosphere neutral density model calibration Traditional empirical thermospheric density models are widely used in orbit determination and prediction of low-Earth satellites. Unfortunately, these models often exhibit large density errors of up to around 30\% RMS. Density errors translate into orbit errors, adversely affecting applications such as re-entry operations, manoeuvre planning, collision avoidance and precise orbit determination for geodetic missions. The extensive database of two-line element (TLE) orbit data contains a wealth of information on satellite drag ... Doornbos, Eelco; Klinkrad, Heiner; Visser, Pieter; Published by: Advances in Space Research Published on: YEAR: 2008   DOI: https://doi.org/10.1016/j.asr.2006.12.025 thermosphere density; satellite drag; Orbit determination; two-line elements |
1