Notice:
|
Found 6 entries in the Bibliography.
Showing entries from 1 through 6
2022 |
During the sudden stratospheric warming (SSW) event in 2013, we investigated the American low latitude around 75°W. We used 12 Global Positioning System (GPS) receivers, a pair of magnetometers, and the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite airglow instrument to unveil the total electron content (TEC), inferred vertical drift, and the changes in the neutral composition, respectively. A major SSW characterized the 2013 SSW event with the main phase (7–27 January 2013) overlapped ... Fashae, J.; Bolaji, O.; Rabiu, A.; Published by: Space Weather Published on: YEAR: 2022   DOI: 10.1029/2021SW002999 equatorial ionization anomaly (EIA); geomagnetic storm; low-latitude ionosphere; sudden stratospheric wind (SSW) |
2021 |
The geomagnetic storm that occurred on 25 August 25 2018, that is, during the minimum of solar cycle 24, is currently the strongest ever probed by the first China Seismo-Electromagnetic Satellite (CSES-01). By integrating the in situ measurements provided by CSES-01 (orbiting at altitude of 507 km) and by Swarm A satellite (orbiting at ca., 460 km) with ground-based observations (ionosondes, magnetometers, and Global Navigation Satellite System receivers), we investigate the ionospheric response at lower- and mid-latitudes o ... Spogli, L.; Sabbagh, D.; Regi, M.; Cesaroni, C.; Perrone, L.; Alfonsi, L.; Di Mauro, D.; Lepidi, S.; Campuzano, S.; Marchetti, D.; De Santis, A.; Malagnini, A.; Scotto, C.; Cianchini, G.; Shen, Xu; Piscini, A.; Ippolito, A.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2021   DOI: 10.1029/2020JA028368 Geomagnetic storms; Equatorial Electrojet; in situ plasma density; ionospheric elctroduamics; Ionospheric storms; low-latitude ionosphere |
2014 |
The present work describes the low-latitude ionospheric variability during an unusually prolonged (~33 h) geomagnetically disturbed condition that prevailed during 15\textendash16 July 2012. The low-latitude electron density in summer hemisphere, investigated using ground- and satellite-based observations, responded to this by generating strong negative ionospheric storm on 16 July. The maximum electron density on 16 July over Indian low latitudes was reduced by more than 50\% compared to that on a geomagnetically quiet d ... Bagiya, Mala; Hazarika, Rumajyoti; Laskar, Fazlul; Sunda, Surendra; Gurubaran, S.; Chakrabarty, D.; Bhuyan, P.; Sridharan, R.; Veenadhari, B.; Pallamraju, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2014 YEAR: 2014   DOI: 10.1002/2014JA020156 low-latitude ionosphere; neutral winds; prolonged southward IMF Bz; thermospheric neutral composition |
2007 |
Storm-time ionospheric disturbance electric fields are studied for two large geomagnetic storms, March 31, 2001 and April 17–18, 2002, by comparing low-latitude observations of ionospheric plasma drifts with results from numerical simulations based on a combination of first-principles models. The simulation machinery combines the Rice convection model (RCM), used to calculate inner magnetospheric electric fields, and the coupled thermosphere ionosphere plasmasphere electrodynamics (CTIPe) model, driven, in part, by RCM-com ... Maruyama, Naomi; Sazykin, Stanislav; Spiro, Robert; Anderson, David; Anghel, Adela; Wolf, Richard; Toffoletto, Frank; Fuller-Rowell, Timothy; Codrescu, Mihail; Richmond, Arthur; Millward, George; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: YEAR: 2007   DOI: https://doi.org/10.1016/j.jastp.2006.08.020 Magnetosphere–ionosphere–thermosphere coupling; Ionospheric electrodynamics; low-latitude ionosphere; Penetration electric fields; disturbance dynamo electric fields; Numerical modeling |
2006 |
Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI We investigate the seasonal, longitudinal, and altitudinal variations of the FF-region morphology at 2100\textendash2300\ LT in the low- and middle-latitudes using the data collected in August, September, and November of 2003. The topside morphology is investigated using in situ measurements of the O+O+ fraction and total ion density by the Defense Meteorological Satellite Program (DMSP) F15 satellite. The morphology of the equatorial ionization anomaly (EIA) near the FF peak altitude is investigated using ... Kil, Hyosub; DeMajistre, Robert; Paxton, L.; Zhang, Yongliang; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 09/2006 YEAR: 2006   DOI: 10.1016/j.jastp.2006.05.024 Equatorial ionization anomaly; FF-region plasma distribution; low-latitude ionosphere; Neutral wind |
2004 |
In this work we will present a method for retrieving nighttime electron density profiles from OI 135.6 nm limb emissions measured by the Global Ultraviolet Imager (GUVI) aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission spacecraft. The primary mechanism for 135.6 nm radiance in the nighttime thermosphere is recombination of O+ ions, and the volume emission rate is approximately proportional to the square of the electron density. Herein we describe a two-step inversion method ... DeMajistre, R.; Paxton, L.; Morrison, D.; Yee, J.-H.; Goncharenko, L.; Christensen, A.; Published by: Journal of Geophysical Research Published on: 04/2004 YEAR: 2004   DOI: 10.1029/2003JA010296 Electron density; inversion; low-latitude ionosphere; TIMED/GUVI |
1