GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 8 entries in the Bibliography.


Showing entries from 1 through 8


2022

Solar and interplanetary events that drove two CIR-related geomagnetic storms of 1 June 2013 and 7 October 2015, and their ionospheric responses at the American and African equatorial ionization Anomaly regions

This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ...

Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.12.027

geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities

Ionospheric Disturbances and Irregularities During the 25–26 August 2018 Geomagnetic Storm

We use ground-based (GNSS, SuperDARN, and ionosondes) and space-borne (Swarm, CSES, and DMSP) instruments to study ionospheric disturbances due to the 25–26 August 2018 geomagnetic storm. The strongest large-scale storm-time enhancements were detected over the Asian and Pacific regions during the main and early recovery phases of the storm. In the American sector, there occurred the most complex effects caused by the action of multiple drivers. At the beginning of the storm, a large positive disturbance occurred over North ...

Astafyeva, E.; Yasyukevich, Y.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.; Syrovatskii, S.; Guendouz, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029843

Geomagnetic storms; Ionosphere; ROTI; ionospheric disturbances; ionospheric irregularities; multi-instrumental approach

2021

Spread-F occurrence during geomagnetic storms near the southern crest of the EIA in Argentina

This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucumán, Argentina, a low latitude station in the Southern American longitudinal sector (26.9°S, 294.6°E; magnetic latitude 15.5°S) near the southern crest of the equatorial ionization anomaly (EIA). Three geomagnetic storms occurred on May 27, 2017 (a month of low occurrence rates of spread-F), October 12, 2016 (a month of transition from low to high occurrence rates of spread-F) and November ...

González, Gilda;

Published by: Advances in Space Research      Published on: feb

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.051

Geomagnetic storms; ionospheric irregularities; space weather; Spread-F

2020

Multi-wavelength coordinated observations of ionospheric irregularity structures from an anomaly crest location during unusual solar minimum of the 24th cycle

The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58\textdegreeN, 88.38\textdegreeE geographic; geomagnetic dip: 32.96\textdegree; 13.00\textdegreeN, 161.63\textdegreeE g ...

Paul, Ashik; Sur, Dibyendu; Haralambous, Haris;

Published by: Advances in Space Research      Published on: 03/2020

YEAR: 2020     DOI: 10.1016/j.asr.2019.11.035

GPS radio measurements; ionospheric irregularities; Northern crest of EIA; Optical measurements; solar minimum; TIP

2014

GPS L1-Frequency Observations of Equatorial Scintillations and Irregularity Zonal Velocities

In this work, the climatology of ionospheric scintillations at global positioning system (GPS) L-band frequency and the zonal drift velocities of scintillation-producing irregularities were depicted for the equatorial observatory of S\~ao Luis (2.33\textdegreeS; 44.21\textdegreeW; dip latitude 1.3\textdegreeS), Brazil. This is the first time that the hourly, monthly, and seasonal variations of scintillations and irregularity zonal drifts at S\~ao Luis were characterized during periods of different solar activity levels (f ...

Muella, Marcio; de Paula, Eurico; Jonah, Olusegun;

Published by: Surveys in Geophysics      Published on: 08/2014

YEAR: 2014     DOI: 10.1007/s10712-013-9252-0

GPS; Ionospheric drifts; ionospheric irregularities; Ionospheric scintillation

2013

Estimating the propagation characteristics of large-scale traveling ionospheric disturbances using ground-based and satellite data

In this article, the propagation characteristics of large-scale traveling ionospheric disturbances (LS TIDs) are estimated during the geomagnetic storm periods of 14\textendash16 May 2005 and 25\textendash27 September 2011 over South Africa. One and two GPS arrays have been independently considered for the storms of 15 May 2005 and 26 September 2011, respectively. The average periods of dominant modes (≈ 2.5\textendash3.5h) in the time series data were determined by applying wavelet analysis on both ionosonde and GPS da ...

Habarulema, John; Katamzi, Zama; McKinnell, Lee-Anne;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA018997

characteristics of large scale TIDs; Geomagnetic storms; ionospheric irregularities

Is Space Weather Different Over Africa, and If So, Why? An AGU Chapman Conference Report

With the increasing reliance on technology, the impact of space weather on engineered systems will certainly increase unless suitable protective measures are taken. Understanding the physics behind space weather impacts and improving the forecasting are the major objectives of the space science community. It is well recognized that many space weather impacts, especially on communications systems, arise from structures in the ionosphere. The equatorial ionosphere, in particular, is one of the most complex and is host to nu ...

Yizengaw, Endawoke; Doherty, Patricia; Fuller-Rowell, Tim;

Published by: Space Weather      Published on: 07/2013

YEAR: 2013     DOI: 10.1002/swe.20063

atmosphere ionosphere interactions; ionospheric irregularities; space weather

2010

Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/SSUSI

Comberiate, Joseph; Paxton, L.;

Published by: Space Weather      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2009SW000546

Equatorial ionosphere; ionospheric irregularities; scintillation



  1