GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2015

Towards estimation of atmospheric tidal effects on the ionosphere via data assimilation

The impact of atmospheric tides on the night time ionosphere is now being a subject of the extensive research within the scientific community. The plausible effect has been observed using the multiple space-borne instruments (e.g. COSMIC/FORMOSAT-3 constellation, TIMED GUVI and NASA IMAGE). Along with the observations, several modelling attempts has been undertaken to prove or refute the interrelation between the atmospheric tides and the wave-four longitudinal night time ionosphere structure. The scope of the current art ...

Solomentsev, Dmitry; Cherniak, Yakov; Titov, Anton; Khattatov, Boris; Khattatov, Vyacheslav;

Published by: Advances in Space Research      Published on: 11/2015

YEAR: 2015     DOI: 10.1016/j.asr.2015.07.014

Atmosphere tides; data assimilation; Ionosphere longitudinal structure

Global ionospheric response to the 2009 sudden stratospheric warming event using Ionospheric Data Assimilation Four-Dimensional (IDA4D) algorithm

A data assimilation algorithm is used to delineate the time-dependent three-dimensional ionospheric response to the 2009 sudden stratospheric warming (SSW) event. We use the Ionospheric Data Assimilation Four-Dimensional (IDA4D) algorithm to study the global ionospheric response to the 2009 SSW. This is the first study to utilize global ionospheric measurements in a data assimilation framework to unambiguously characterize atmosphere-ionosphere coupling via tidal modifications during the 2009 SSW event. Model results reve ...

Azeem, I.; Crowley, G.; Honniball, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA020993

Atmospheric tides; data assimilation; ionosphere/atmosphere interactions; sudden stratospheric warming

2013

Ground-based GPS observation of SED-associated irregularities over CONUS

\ It has been known that steep total electron content (TEC) gradients observed at the boundary between the storm-enhanced plasma density (SED) and the low TEC region at subauroral and midlatitude regions are associated with ionospheric irregularities that impact communication and navigation systems. However, the relationship between the SED-associated irregularities and TEC gradients is still not well understood, partly because of the difficulties of resolving small-scale TEC gradients from sparsely distributed TEC o ...

Sun, Yang-Yi; Matsuo, Tomoko; Araujo-Pradere, Eduardo; Liu, Jann-Yenq;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2013

YEAR: 2013     DOI: 10.1029/2012JA018103

data assimilation; irregularity; nonstationary covariance; SED; TEC gradient

2012

Assimilation of FORMOSAT-3/COSMIC electron density profiles into a coupled thermosphere/ionosphere model using ensemble Kalman filtering

This paper presents our effort to assimilate FORMOSAT-3/COSMIC (F3/C) GPS Occultation Experiment (GOX) observations into the National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) by means of ensemble Kalman filtering (EnKF). The F3/C electron density profiles (EDPs) uniformly distributed around the globe which provide an excellent opportunity to monitor the ionospheric electron density structure. The NCAR TIE-GCM simulates the Earth\textquoterights ther ...

Lee, I.; Matsuo, T.; Richmond, A.; Liu, J; Wang, W.; Lin, C.; Anderson, J.; Chen, M.;

Published by: Journal of Geophysical Research      Published on: 10/2012

YEAR: 2012     DOI: 10.1029/2012JA017700

data assimilation; ensemble Kalman filter; FORMOSAT-3/COSMIC; Ionosphere



  1