Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2022 |
The paper observes the super-imposed effects of intense and moderate solar flares and Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storm events on the ionosphere and thermosphere at mid and high latitudes during low solar activity periods. The observations are conducted over a fixed longitude (∼117°W geographic) during May 27–31, 2017 (duration with intense geomagnetic storm without any significant solar flare event), September 3–6, 2017 (duration with solar flare events), September ... Sur, Dibyendu; Ray, Sarbani; Paul, Ashik; Published by: Advances in Space Research Published on: jul YEAR: 2022   DOI: 10.1016/j.asr.2022.04.024 CME driven storms; HSSW driven storms; Joule heating; O/N ratio; Plasmaspheric contributions; Solar flare |
2021 |
This study investigates the ionospheric Total Electron Content (TEC) responses over 75°E longitude to the solar flares and geomagnetic storms of September 6–9, 2017. The results of this study provide the impacts of solely solar flares on the ionosphere and such impact when the effects of solar flares and geomagnetic storm are combined. On September 6, two X class solar flares, namely X2.2 at 0857 UT and X9.3 at 1153 UT, were recorded with quiet geomagnetic conditions. The EUV/X-ray intensity of X9.3 flare was significan ... Chakraborty, Monti; Singh, A.; Rao, S.; Published by: Advances in Space Research Published on: aug YEAR: 2021   DOI: 10.1016/j.asr.2021.04.012 |
1