Global UltraViolet Imager

GUVI Biblio


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Climatology of global gravity wave activity and dissipation revealed by SABER/TIMED temperature observations

Gravity wave activity and dissipation in the height range from the low stratosphere to the low thermosphere (25\textendash115 km) covering latitudes between 50\textdegreeS and 50\textdegreeN are statistically studied by using 9-year (January 22, 2002\textendashDecember 31, 2010) SABER/TIMED temperature data. We propose a method to extract realistic gravity wave fluctuations from the temperature profiles and treat square temperature fluctuations as GW activity. Overall, the gravity wave activity generally increases with he ...

Shuai, Jing; Zhang, ShaoDong; Huang, ChunMing; YI, Fan; Huang, KaiMing; Gan, Quan; Gong, Yun;

Published by: Science China Technological Sciences      Published on: 05/2014

YEAR: 2014     DOI: 10.1007/s11431-014-5527-z

climatology; dissipation; gravity wave; middle and high atmosphere; SABER; TIMED


Empirical STORM-E model: I. Theoretical and observational basis

Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomag ...

Mertens, Christopher; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin; Russell, James;

Published by: Advances in Space Research      Published on:

YEAR: 2013     DOI:

Auroral particle precipitation; Ionosphere; E-region; Magnetic storm; Infrared remote sensing; SABER