Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2022 |
The paper observes the super-imposed effects of intense and moderate solar flares and Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storm events on the ionosphere and thermosphere at mid and high latitudes during low solar activity periods. The observations are conducted over a fixed longitude (∼117°W geographic) during May 27–31, 2017 (duration with intense geomagnetic storm without any significant solar flare event), September 3–6, 2017 (duration with solar flare events), September ... Sur, Dibyendu; Ray, Sarbani; Paul, Ashik; Published by: Advances in Space Research Published on: jul YEAR: 2022   DOI: 10.1016/j.asr.2022.04.024 CME driven storms; HSSW driven storms; Joule heating; O/N ratio; Plasmaspheric contributions; Solar flare |
2021 |
The present paper reports magnetospheric-thermospheric-ionospheric interactions, observed during geomagnetically disturbed periods in 2015–2016 from mid-latitude stations located in the US-Pacific longitudes (\textasciitilde120°W geographic). These interactions have been analyzed for a series of Coronal Mass Ejection (CME) and High Speed Solar Wind (HSSW) driven geomagnetic storms during the moderate solar activity periods. The geomagnetically disturbed periods under consideration in this paper have an interesting feature ... Sur, Dibyendu; Ray, Sarbani; Paul, Ashik; Published by: Advances in Space Research Published on: aug YEAR: 2021   DOI: 10.1016/j.asr.2021.03.027 CME and HSSW storms; Joule heating; Meridional and zonal wind; O/N ratio; Plasma transport; VTEC |
1