GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

Bayesian approach for auroral oval reconstruction from ground-based observations

Naked eye observations of aurorae might be used to obtain information on the large-scale magnetic field of the Earth at historic times. Their abundance may also help bridge gaps in observational time-series of proxies for solar activity such as the sunspot number or cosmogenic isotopes. With information derived from aurora observations like observing site, time of aurora sighting and position on the sky we can reconstruct the auroral oval. Since aurorae are correlated with geomagnetic indices like the Kp index, it is possibl ...

Wagner, D.; Neuhäuser, R.; Arlt, R.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: feb

YEAR: 2022     DOI: 10.1016/j.jastp.2022.105824

auroral oval; Magnetic storms; space weather

Spatial-Temporal Behaviors of Large-Scale Ionospheric Perturbations During Severe Geomagnetic Storms on September 7–8 2017 Using the GNSS, SWARM and TIE-GCM Techniques

Geomagnetic storms on 7–8 September 2017 triggered severe ionospheric disturbances that had a serious effect on satellite navigation and radio communication. Multiple observations derived from Global Navigation Satellite System receivers, Earth s Magnetic Field and Environment Explorers (SWARM) and the Thermosphere-Ionosphere -Electrodynamics General Circulation Model s simulations are utilized to investigate the spatial-temporal ionospheric behaviors under storm conditions. The results indicate that the electron density i ...

Li, Wang; Zhao, Dongsheng; He, Changyong; Hancock, Craig; Shen, Yi; Zhang, Kefei;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2021JA029830

hemispheric asymmetry; ionospheric disturbances; Magnetic storms; thermospheric composition changes; TIE-GCM

2013

A comparative study of TEC response for the African equatorial and mid-latitudes during storm conditions

The solar wind effects on the Earth\textquoterights environment are studied for their basic scientific values and crucial practical impacts on technological systems. This paper reports results of Total Electron Content (TEC) changes during two successive ionospheric storms of 7\textendash12 November 2004 using GPS data derived from dual frequency receivers located at African equatorial and midlatitudes. In the geographic coordinate system, equatorial TEC variability is considered over Libreville (0.36\textdegreeN, 9.67\te ...

Habarulema, John; McKinnell, Lee-Anne; a, Dalia; Zhang, Yongliang; Seemala, Gopi; Ngwira, Chigomezyo; Chum, Jaroslav; Opperman, Ben;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 09/2013

YEAR: 2013     DOI: 10.1016/j.jastp.2013.05.008

African equatorial and midlatitude TEC dynamics; Magnetic storms; TIDs

2012

Equatorial ionosphere responses to two magnetic storms of moderate intensity from conjugate point observations in Brazil

Equatorial ionospheric responses during two magnetic storms of moderate intensity are investigated, for the first time, by conjugate point observations in Brazil. The study focuses on storm-induced changes in the evening prereversal vertical drift, thermospheric trans-equatorial winds, spread F/plasma bubble irregularity development, electron density/plasma frequency heights, the EIA strength, and zonal plasma drifts. It is based on data obtained from five Digisondes operated in Brazil, three of them being part of a conju ...

Abdu, M.; Batista, I.; Bertoni, F.; Reinisch, B.; Kherani, E.; Sobral, J.;

Published by: Journal of Geophysical Research      Published on: 05/2012

YEAR: 2012     DOI: 10.1029/2011JA017174

Equatorial ionosphere; Magnetic storms; plasma bubbles; plasma drifts; spread F; transequatorial winds



  1