GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2020

Impacts of Binning Methods on High-Latitude Electrodynamic Forcing: Static Versus Boundary-Oriented Binning Methods

An outstanding issue in the general circulation model simulations for Earth\textquoterights upper atmosphere is the inaccurate estimation of Joule heating, which could be associated with the inaccuracy of empirical models for high-latitude electrodynamic forcing. The binning methods used to develop those empirical models may contribute to the inaccuracy. Traditionally, data are binned through a static binning approach by using fixed geomagnetic coordinates, in which the dynamic nature of the forcing is ...

Zhu, Qingyu; Deng, Yue; Richmond, Arthur; Maute, Astrid; Chen, Yun-Ju; Hairston, Marc; Kilcommons, Liam; Knipp, Delores; Redmon, Robert; Mitchell, Elizabeth;

YEAR: 2020     DOI: 10.1029/2019JA027270

Electric field; high latitude; Joule heating; particle precipitation

2014

Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations

Altitudinal distribution of Joule heating is very important to the thermosphere and ionosphere, which is roughly proportional to the Pedersen conductance at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations from 2008 to 2011, the height-integrated Pedersen conductivities in both E (100\textendash150\ km) and F (150\textendash600\ km) regions and their ratio γPγP (PE/< ...

Sheng, Cheng; Deng, Yue; Yue, Xinan; Huang, Yanshi;

YEAR: 2014     DOI: 10.1016/j.jastp.2013.12.013

COSMIC; Interhemispheric asymmetry; Joule heating; Pedersen conductivity

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research\textendashthermosphere-ionosphere-mesosphere electrodynamics\textendashgene ...

Jiang, Guoying; Wang, Wenbin; Xu, JiYao; Yue, Jia; Burns, Alan; Lei, Jiuhou; Mlynczak, Martin; Rusell, James;

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2013JA019406

13.5 day variation; 9 day variation; Joule heating; lower thermospheric temperature; recurrent geomagnetic activity; solar EUV radiation

Variations of the neutral temperature and sodium density between 80 and 107 km above Troms\o during the winter of 2010-2011 by a new solid-state sodium lidar

A new solid-state sodium lidar installed at Ramfjordmoen, Troms\o (69.6\textdegreeN, 19.2\textdegreeE), started observations of neutral temperature together with sodium density in the mesosphere-lower thermosphere (MLT) region on 1 October 2010. The new lidar provided temperature data with a time resolution of 10 min and with good quality between \~80 and \~105 km from October 2010 to March 2011. This paper aims at introducing the new lidar with its observational results obtained over the first 6 months of observations. W ...

Nozawa, S.; Kawahara, T.; Saito, N.; Hall, C.; Tsuda, T.; Kawabata, T.; Wada, S.; Brekke, A.; Takahashi, T.; Fujiwara, H.; Ogawa, Y.; Fujii, R.;

YEAR: 2014     DOI: 10.1002/2013JA019520

Joule heating; neutral temperature; polar MLT; sodium lidar

2012

Importance of capturing heliospheric variability for studies of thermospheric vertical winds

Using the Global Ionosphere Thermosphere Model with observed real-time heliospheric input data, the magnitude and variability of thermospheric neutral vertical winds are investigated. In order to determine the role of variability in the Interplanetary Magnetic Field (IMF) and solar wind density on the neutral wind variability, the heliospheric input data are smoothed. The effects of smoothing the IMF and solar wind and density on the vertical winds are simulated for the cases of no smoothing, 5-minute, and 12-minute smoot ...

Erdal, Yi\u; Ridley, Aaron; Moldwin, Mark;

YEAR: 2012     DOI: 10.1029/2012JA017596

gravity waves; interplanetary magnetic field; Joule heating; magnetosphere-ionosphere-thermosphere coupling; nonhydrostatic general circulation model; vertical wind variability



  1