GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2022

Extreme Enhancements of Electron Temperature in Low Latitude Topside Ionosphere During the October 2016 Storm

We use the in-situ observations of DMSP and SWARM satellites to report the changes of the topside ionospheric electron temperature during the October 2016 storm. Electron temperature in the afternoon sector dramatically increases in low latitudes in the recovery phase of the storm. Furthermore, the temperature enhancements have an obvious dependence on longitude and are mainly centralized around 100°–150°E in different satellite observations. The temperature enhancements attain more than 2,000 K at 840 km and 1,500 K at ...

Zhang, Ruilong; Liu, Libo; Ma, Han; Chen, Yiding; Le, Huijun; Yoshikawa, Akimasa;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030278

electron temperature; equatorial topisde; Ionospheric storm; vertical drift

2021

Features of the Ionospheric Storm on December 21–24, 2016

The purpose of this work is to investigate the response of the F region and topside ionosphere to the moderate geomagnetic storm on December 21, 2016 (Kp max = 6). The subject of the study is the height–time variations in the parameters of the ionospheric plasma over Kharkiv. Experimental data were obtained using vertical sounding and incoherent scatter methods by the ionosonde and incoherent scatter radar. The presented results are based on the correlation analysis of the incoherent scattered signal. The ion and elect ...

Katsko, S.; Emelyanov, Ya.; Chernogor, L.;

Published by: Kinematics and Physics of Celestial Bodies      Published on: mar

YEAR: 2021     DOI: 10.3103/S0884591321020045

geomagnetic storm; Electron density; Ionospheric storm; space weather; ionosonde; electron and ion temperatures; incoherent scatter radar; plasma velocity; positive and negative storm phases

The ionospheric response to high-intensity long duration continuous AE activity (HILDCAA) event (13–15 April 2005) over mid-latitude African region

The ionospheric responses to High-Intensity Long Duration Continuous Auroral Electrojet Activity (HILDCAA) event which happened following the CIR-driven storm were studied over the southern hemisphere mid-latitude in the African sector. The 13–15 April 2005 event was analysed to understand some of the mechanisms responsible for the ionospheric changes during HILDCAA event. The ionosonde critical frequency of F2 layer (foF2) and Global Navigation Satellite System (GNSS) Total Electron Content (TEC) were used to analyse the ...

Matamba, Tshimangadzo; Habarulema, John;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.034

CIR; HILDCAA; Ionospheric storm; PPEF; TEC; TIDs

First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: F Region Responses and Comparisons Over the American Sector

Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southe ...

Moro, J.; Xu, J.; Denardini, C.; Resende, L.; Neto, P.; Da Silva, L.; Silva, R.; Chen, S.; Picanço, G.; Carmo, C.; Liu, Z.; Yan, C.; Wang, C.; Schuch, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028663

Digisonde; Equatorial ionization anomaly; F-region; Ionospheric storm; SAMA; space weather

2015

A case study of ionospheric storm effects in the Chinese sector during the October 2013 geomagnetic storm

In this study, we investigate the ionospheric storm effects in the Chinese sector during 2 October 2013 geomagnetic storm. The TEC map over China sector (1\textdegree\ \texttimes\ 1\textdegree) and eight ionosondes data along the longitude of 110\textdegreeE are used to show significant positive ionospheric phases (enhancements in TEC and ionospheric peak electron density NmF2) in the high-middle latitude region and the negative effects at the low latitude and equatorial region during the storm. A wave structure ...

Mao, Tian; Sun, Lingfeng; Hu, Lianhuan; Wang, Yungang; Wang, Zhijun;

Published by: Advances in Space Research      Published on: 06/2015

YEAR: 2015     DOI: 10.1016/j.asr.2015.05.045

Ionospheric storm; Neutral wind; LSTIDs; PPEF; DDEF

2014

A case study of ionospheric storm effects during long-lasting southward IMF B z -driven geomagnetic storm

Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14 ...

Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.910.1002/2014JA020273

GUVI; Ionospheric storm; prompt penetration electric fields; TIMED

2003

Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere

The ionospheric response to the magnetic storm of 15 July 2000 is investigated using the global total electron content (TEC) maps provided by global positioning system and the measurements of ion density, composition, and drift velocity from the Defense Meteorological Satellite Program (DMSP) F13 and F15 spacecraft. The global TEC maps showed clear seasonal effects that can be characterized by a dominance of a negative ionospheric storm (decrease in plasma density) in the summer (northern) hemisphere and the pronounced po ...

Kil, Hyosub; Paxton, L.; Pi, X.; Hairston, M.; Zhang, Y.;

Published by: Journal of Geophysical Research      Published on: 11/2003

YEAR: 2003     DOI: 10.1029/2002JA009782

ionosphere-thermosphere coupling; Ionospheric storm; thermospheric disturbance



  1