GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2011

Comparisons of foF2 with IRI model and equatorial vertical drifts

Measurements of the critical frequency, foF2 recorded over Ibadan: 7.4°N, 3.9°E (geographic), 6°S (dip angle) have been compared with the International Reference Ionosphere (IRI-2007) model for solar maximum geomagnetically quiet conditions, with a view to determining what modifications might bring about better predictions for the model. Our results reveal that the present version of IRI essentially reproduces diurnal trends and the general features of the experimental observations for all seasons, except for nighttime Ju ...

Oyekola, O.S.;

Published by: Advances in Space Research      Published on:

YEAR: 2011     DOI: https://doi.org/10.1016/j.asr.2011.06.027

foF2; IRI-model; Equatorial-ionosphere; Ion drift; High solar activity

2005

Spatial and temporal ion drift variability in the high -latitude F region during southward IMF

The purpose of the following research is to investigate the role and contribution of variability or structure in the ion drift to the overall Joule heating rate during times of southward interplanetary magnetic field (IMF). This investigation is limited to southward IMF because the convection patterns are generally more stable and reproducible than those seen for a northward IMF. This allows us to organize the data according to features of the convection pattern and thus produce results that can be used in model simulations ...

Johnson, Eric;

Published by: ProQuest Dissertations and Theses      Published on:

YEAR: 2005     DOI:

Pure sciences; F region; High-latitude; interplanetary magnetic field; Ion drift; atmosphere; 0725:Atmospheric sciences



  1