GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2022

The investigation on daytime conjugate hemispheric asymmetry along 100°E longitude using observations and model simulations: New insights

The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ...

Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.;

Published by: Advances in Space Research      Published on: may

YEAR: 2022     DOI: 10.1016/j.asr.2022.02.058

NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar

2016

Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude

In this article, we presented ionospheric F2 responses to total solar eclipses on the basis of the data obtained from five (5) equatorial/low-latitude and twenty-seven (27) mid-latitude ionosonde stations, which are within the obscuration percentage of 50\textendash100\% of the path of the total solar eclipses progression. Statistically, the diurnal changes in the F2 layer peak height hmF2 and electron density NmF2, as well as the latitudinal and hemispheric dependence and the contribution of both magnetic and solar activ ...

Adekoya, B.J.; Chukwuma, V.U.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 02/2016

YEAR: 2016     DOI: 10.1016/j.jastp.2016.01.006

Equatorial/low-latitude; Hemisphere; mid-latitude; NmF2 and hmF2; Solar ionizing radiation



  1