Notice:
|
Found 2 entries in the Bibliography.
Showing entries from 1 through 2
2014 |
Solar filament impact on 21 January 2005: Geospace consequences On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the mas ... Kozyra, J.; Liemohn, M.; Cattell, C.; De Zeeuw, D.; Escoubet, C.; Evans, D.; Fang, X.; Fok, M.-C.; Frey, H.; Gonzalez, W.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W.; Mende, S.; Paxton, L.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M.; Tsurutani, B.; Verkhoglyadova, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2014 YEAR: 2014   DOI: 10.1002/2013JA019748 cold dense plasma sheet; Equatorial anomaly; magnetotail; precipitation; prompt penetration electric field; solar filament |
2013 |
The equatorial ionization anomaly (EIA) development is studied using the total electron content (TEC) observed by the Global Positioning System (GPS) satellites, the F2-layer critical frequency (foF2) as measured by digisondes operated in the Brazilian sector, and by model simulation using the SUPIM (Sheffield University Plasmasphere Ionosphere Model). We have used two indices based on foF2 and TEC to represent the strength of the EIA Southern Anomaly Crest (SAC), which are denoted, respectively, by SAC( ... Nogueira, P.A.B.; Abdu, M.A.; Souza, J.R.; Batista, I.S.; Bailey, G.J.; Santos, A.M.; Takahashi, H.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 11/2013 YEAR: 2013   DOI: 10.1016/j.jastp.2013.08.013 |
1