Notice:
|
Found 6216 entries in the Bibliography.
Showing entries from 1 through 50
2022 |
Using a suite of instruments, which included a chain of ground-based dual-frequency GPS receivers, and magnetometers, we have studied the importance of thermospheric meridional wind circulation in controlling the distribution of plasma over the Indian low latitude ionospheric regions during the period of a severe geomagnetic storm. The storm on 15 May 2005, which had its onset coinciding with the local noon time sector for the Indian ionospheric zone, was a severe geomagnetic storm with symH ∼ - 305 nT. A steep increase i ... Published by: Advances in Space Research Published on: oct YEAR: 2022   DOI: 10.1016/j.asr.2022.06.027 Compositional disturbances; Equatorial ionosphere; geomagnetic storm; total electron content |
Using a suite of instruments, which included a chain of ground-based dual-frequency GPS receivers, and magnetometers, we have studied the importance of thermospheric meridional wind circulation in controlling the distribution of plasma over the Indian low latitude ionospheric regions during the period of a severe geomagnetic storm. The storm on 15 May 2005, which had its onset coinciding with the local noon time sector for the Indian ionospheric zone, was a severe geomagnetic storm with symH ∼ - 305 nT. A steep increase i ... Published by: Advances in Space Research Published on: oct YEAR: 2022   DOI: 10.1016/j.asr.2022.06.027 Compositional disturbances; Equatorial ionosphere; geomagnetic storm; total electron content |
Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements Low-latitude plasma blobs are localized density enhancements of electron density that are occasionally observed in the night-time tropical ionosphere. Two-dimensional (2D) imaging of this phenomenon has been rare and frequently restricted to Central/South America, which is densely covered with ground-based airglow imagers and Global Navigation Satellite System (GNSS) receivers. In Africa, on the contrary, no 2D image of a blob has been reported. Here we present two low-latitude blob events above Africa, one in the Northern s ... Park, Jaeheung; Min, Kyoung; Eastes, Richard; Chao, Chi; Kim, Hee-Eun; Lee, Junchan; Sohn, Jongdae; Ryu, Kwangsun; Seo, Hoonkyu; Yoo, Ji-Hyeon; Lee, Seunguk; Woo, Changho; Kim, Eo-Jin; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.05.021 |
Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements Low-latitude plasma blobs are localized density enhancements of electron density that are occasionally observed in the night-time tropical ionosphere. Two-dimensional (2D) imaging of this phenomenon has been rare and frequently restricted to Central/South America, which is densely covered with ground-based airglow imagers and Global Navigation Satellite System (GNSS) receivers. In Africa, on the contrary, no 2D image of a blob has been reported. Here we present two low-latitude blob events above Africa, one in the Northern s ... Park, Jaeheung; Min, Kyoung; Eastes, Richard; Chao, Chi; Kim, Hee-Eun; Lee, Junchan; Sohn, Jongdae; Ryu, Kwangsun; Seo, Hoonkyu; Yoo, Ji-Hyeon; Lee, Seunguk; Woo, Changho; Kim, Eo-Jin; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.05.021 |
Low-latitude plasma blobs above Africa: Exploiting GOLD and multi-satellite in situ measurements Low-latitude plasma blobs are localized density enhancements of electron density that are occasionally observed in the night-time tropical ionosphere. Two-dimensional (2D) imaging of this phenomenon has been rare and frequently restricted to Central/South America, which is densely covered with ground-based airglow imagers and Global Navigation Satellite System (GNSS) receivers. In Africa, on the contrary, no 2D image of a blob has been reported. Here we present two low-latitude blob events above Africa, one in the Northern s ... Park, Jaeheung; Min, Kyoung; Eastes, Richard; Chao, Chi; Kim, Hee-Eun; Lee, Junchan; Sohn, Jongdae; Ryu, Kwangsun; Seo, Hoonkyu; Yoo, Ji-Hyeon; Lee, Seunguk; Woo, Changho; Kim, Eo-Jin; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.05.021 |
An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthap ... Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.018 |
An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthap ... Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.018 |
An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthap ... Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.018 |
An extensive intercomparison of ionospheric foF2 observations and NCAR Thermosphere-Ionosphere ElectrodynamicsGeneral Circulation Model(TIE-GCM)simulations has been carried out for the dip equatorial location of Thiruvananthapuram. Ionosonde measurements for geomagnetically quiet days of 2002, 2006 and 2008, representing solar maximum, solar minimum and deep solar minimum conditions have been used for the analysis. In general TIE-GCM simulations reproduced the temporal and seasonal characteristics of foF2 over Thiruvananthap ... Mridula, N.; Manju, G.; Sijikumar, S.; Pant, Tarun; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.018 |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
\textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater X-ray Earth occultation sounding (XEOS) is an emerging method for measuring the neutral density in the lower thermosphere. In this paper, the X-ray Earth occultation (XEO) of the Crab Nebula is investigated using the Hard X-ray Modulation Telescope (Insight-HXMT). The pointing observation data on the 30 September 2018 recorded by the low-energy X-ray telescope (LE) of Insight-HXMT are selected and analyse ... Yu, Daochun; Li, Haitao; Li, Baoquan; Ge, Mingyu; Tuo, Youli; Li, Xiaobo; Xue, Wangchen; Liu, Yaning; Wang, Aoying; Zhu, Yajun; Luo, Bingxian; Published by: Atmospheric Measurement Techniques Published on: may YEAR: 2022   DOI: 10.5194/amt-15-3141-2022 |
A paper A new method to subtract dayglow for auroral observation of SSUSI in LBH ranges based on the improved AURIC reports a new method to estimate the dayglow intensities in DMSP/SSUSI LBH bands using an improved AURIC model. It is claimed that the new method offers a better alternative than the SSUSI operational algorithm which uses a data based table. The paper showed a few examples and compared them with SSSUI operational results. The comparison indicated that the new method didn t offer any improvement and provided net ... Zhang, Yongliang; Paxton, Larry; Schaefer, Robert; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: mar YEAR: 2022   DOI: 10.1016/j.jastp.2022.105833 |
A paper A new method to subtract dayglow for auroral observation of SSUSI in LBH ranges based on the improved AURIC reports a new method to estimate the dayglow intensities in DMSP/SSUSI LBH bands using an improved AURIC model. It is claimed that the new method offers a better alternative than the SSUSI operational algorithm which uses a data based table. The paper showed a few examples and compared them with SSSUI operational results. The comparison indicated that the new method didn t offer any improvement and provided net ... Zhang, Yongliang; Paxton, Larry; Schaefer, Robert; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: mar YEAR: 2022   DOI: 10.1016/j.jastp.2022.105833 |
A paper A new method to subtract dayglow for auroral observation of SSUSI in LBH ranges based on the improved AURIC reports a new method to estimate the dayglow intensities in DMSP/SSUSI LBH bands using an improved AURIC model. It is claimed that the new method offers a better alternative than the SSUSI operational algorithm which uses a data based table. The paper showed a few examples and compared them with SSSUI operational results. The comparison indicated that the new method didn t offer any improvement and provided net ... Zhang, Yongliang; Paxton, Larry; Schaefer, Robert; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: mar YEAR: 2022   DOI: 10.1016/j.jastp.2022.105833 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
Total Electron Content Variations during an HSS/CIR driven storm at high and middle latitudes
Geethakumari, Gopika; Aikio, Anita; Cai, Lei; Vanhamaki, Heikki; Pedersen, Marcus; Coster, Anthea; Marchaudon, Aurélie; Blelly, Pierre-Louis; Haberle, Veronika; Maute, Astrid; Ellahouny, Nada; Virtanen, Ilkka; Norberg, Johannes; Soyama, Shin-Ichiro; Grandin, Maxime; Published by: Published on: mar YEAR: 2022   DOI: 10.5194/egusphere-egu22-8194 |
The control of magnetic disturbance induced seed perturbations on the daily variation in night-time ionization irregularity occurrence is studied using ionosonde data and TIMED/GUVI neutral density data at the magnetic equatorial region, Trivandrum. The study reveals that there is a requisite threshold seed amplitude for ESF to occur at a particular altitude and this requisite seed increases as the altitude decreases. This dependence of requisite seed perturbation on altitude for multiple years, which incorporates the electr ... Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.11.038 Equatorial ionosphere; Equatorial Spread F; Geomagnetically disturbed period; neutral density |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
Far-ultraviolet airglow remote sensing measurements on Feng Yun 3-D meteorological satellite \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater The Ionospheric Photometer (IPM) is carried on the Feng Yun 3-D (FY3D) meteorological satellite, which allows for the measurement of far-ultraviolet (FUV) airglow radiation in the thermosphere. IPM is a compact and high-sensitivity nadir-viewing FUV remote sensing instrument. It monitors 135.6 nm emission in the nightside thermosphere and 135.6 nm and N\textlessspan class="inline-formula"\textgreater$_\te ... Wang, Yungang; Fu, Liping; Jiang, Fang; Hu, Xiuqing; Liu, Chengbao; Zhang, Xiaoxin; Li, JiaWei; Ren, Zhipeng; He, Fei; Sun, Lingfeng; Sun, Ling; Yang, Zhongdong; Zhang, Peng; Wang, Jingsong; Mao, Tian; Published by: Atmospheric Measurement Techniques Published on: mar YEAR: 2022   DOI: 10.5194/amt-15-1577-2022 |
The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, Canberra (45.65° S, 226.30° E), in the Australian Region, by analyzing the storm–time variations in the critical frequency of the F2-region (foF2). Out of six storms, a storm of 23–24 April did not produce any ionospheric effe ... Published by: Atmosphere Published on: mar YEAR: 2022   DOI: 10.3390/atmos13030480 Geomagnetic storms; \textbfE × \textbfB drifts; disturbance dynamo electric fields; prompt penetrating electric fields; storm-induced circulation |
The ionospheric effects of six intense geomagnetic storms with Dst index ≤ −100 nT that occurred in 2012 were studied at a low-latitude station, Darwin (Geomagnetic coordinates, 21.96° S, 202.84° E), a low-mid-latitude station, Townsville (28.95° S, 220.72° E), and a mid-latitude station, Canberra (45.65° S, 226.30° E), in the Australian Region, by analyzing the storm–time variations in the critical frequency of the F2-region (foF2). Out of six storms, a storm of 23–24 April did not produce any ionospheric effe ... Published by: Atmosphere Published on: mar YEAR: 2022   DOI: 10.3390/atmos13030480 Geomagnetic storms; \textbfE × \textbfB drifts; disturbance dynamo electric fields; prompt penetrating electric fields; storm-induced circulation |
This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ... Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.; Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.12.027 geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities |
This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ... Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.; Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.12.027 geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities |
This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ... Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.; Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.12.027 geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |
In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribu ... Yamauchi, Masatoshi; De Keyser, Johan; Parks, George; Oyama, Shin-ichiro; Wurz, Peter; Abe, Takumi; Beth, Arnaud; Daglis, Ioannis; Dandouras, Iannis; Dunlop, Malcolm; Henri, Pierre; Ivchenko, Nickolay; Kallio, Esa; Kucharek, Harald; Liu, Yong; Mann, Ingrid; Marghitu, Octav; Nicolaou, Georgios; Rong, Zhaojin; Sakanoi, Takeshi; Saur, Joachim; Shimoyama, Manabu; Taguchi, Satoshi; Tian, Feng; Tsuda, Takuo; Tsurutani, Bruce; Turner, Drew; Ulich, Thomas; Yau, Andrew; Yoshikawa, Ichiro; Published by: Experimental Astronomy Published on: mar YEAR: 2022   DOI: 10.1007/s10686-022-09846-9 Collision cross-section; Future missions; Low-energy; Neutral gas; Plasma; Voyage 2050 |