GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 28 entries in the Bibliography.


Showing entries from 1 through 28


2020

Evaluation on the Quasi-Realistic Ionospheric Prediction Using an Ensemble Kalman Filter Data Assimilation Algorithm

In this work, we evaluated the quasi-realistic ionosphere forecasting capability by an ensemble Kalman filter (EnKF) ionosphere and thermosphere data assimilation algorithm. The National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model is used as the background model in the system. The slant total electron contents (TECs) from global International Global Navigation Satellite Systems Service ground-based receivers and from the Constellation Observing System for Meteorology, ...

He, Jianhui; Yue, Xinan; Le, Huijun; Ren, Zhipeng; Wan, Weixing;

YEAR: 2020     DOI: 10.1029/2019SW002410

Comparison of Reference Heights of O/N 2 and ∑O/N 2 Based on GUVI Dayside Limb Measurement

We define a new thermospheric concept, the reference heights of O/N2, referring to a series of thermospheric heights corresponding to the fixed ratios of O to N2 number density. Here, based on Global Ultraviolet Imager (GUVI) limb measurement, we compare O/N2 column density ratio (∑O/N2) and the reference heights of O/N2. We choose the transition height of O and N2 (transition height hereafter), a special reference height at which O number density is equa ...

Yu, Tingting; Ren, Zhipeng; Yu, You; Yue, Xinan; Zhou, Xu; Wan, Weixing;

YEAR: 2020     DOI: 10.1029/2019SW002391

O/N2 ratio

2019

Annual and Semiannual Oscillations of Thermospheric Composition in TIMED/GUVI Limb Measurements

The Global UltraViolet Imager (GUVI) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite provides a data set of vertical thermospheric composition (O, N2, and O2 densities) and temperature profiles from 2002\textendash2007. Even though GUVI sampling is limited by orbital constraint, we demonstrated that the GUVI data set can be used to derive the altitude profiles of the amplitudes and phases of annual oscillation (AO) and semiannual oscillation (SAO), thereby pro ...

Yue, Jia; Jian, Yongxiao; Wang, Wenbin; Meier, R.R.; Burns, Alan; Qian, Liying; Jones, M.; Wu, Dong; Mlynczak, Martin;

YEAR: 2019     DOI: 10.1029/2019JA026544

Comparison of Thermospheric Density Between GUVI Dayside Limb Data and CHAMP Satellite Observations: Based on Empirical Model

The Global Ultraviolet Imager (GUVI) aboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite senses far ultraviolet airglow emissions in the thermosphere. The retrieved altitude profiles of thermospheric neutral density from GUVI daytime limb scans are significant for ionosphere-thermosphere study. Here, we use the profiles of the main neutral density to derive the total mass density during the period 2002\textendash2007 under geomagnetic quiet conditions (ap\ \<\ =12) ...

Yu, Tingting; Ren, Zhipeng; Yue, Xinan; Yu, You; Wan, Weixing;

YEAR: 2019     DOI: 10.1029/2018JA026229

2018

Ionospheric and Thermospheric Responses to the Recent Strong Solar Flares on 6 September 2017

Two solar flares X2.2 and X9.3 erupted over the active region 2673 on 6 September 2017, and the second flare is the strongest since 2005. In order to investigate the ionospheric and thermospheric responses to the two solar flares, the global total electron content and the critical frequency of F2 layer obtained from GPS stations and ionosondes are used. The results indicate that the ionosphere in the sunlit hemisphere increased significantly with magnitudes of 0.1 and 0.5 total electron content units for the X2.2 and X9.3 ...

Li, Wang; Yue, Jianping; Yang, Yang; He, Changyong; Hu, Andong; Zhang, Kefei;

YEAR: 2018     DOI: 10.1029/2018JA025700

On the Responses of Mesosphere and Lower Thermosphere Temperatures to Geomagnetic Storms at Low and Middle Latitudes

Observations from lidars and satellites have shown that large neutral temperature increases and decreases occur in the middle and low latitudes of the mesosphere and lower thermosphere region during geomagnetic storms. Here we undertake first-principles simulations of mesosphere and lower thermosphere temperature responses to storms using the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model to elucidate the nature and causes of these changes. Temperature variations were not uniform; instead, ni ...

Li, Jingyuan; Wang, Wenbin; Lu, Jianyong; Yuan, Tao; Yue, Jia; Liu, Xiao; Zhang, Kedeng; Burns, Alan; Zhang, Yongliang; Li, Zheng;

YEAR: 2018     DOI: 10.1029/2018GL078968

Modeling study of the ionospheric responses to the quasi-biennial oscillations of the sun and stratosphere

Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017?

In this study, multiple data sets from Beidou geostationary orbit satellites total electron contents (TECs), ionosonde, meteor radar, magnetometer, and model simulations have been used to investigate the ionospheric responses in the Asian-Australian sector during the September 2017 geomagnetic storm. It was found that long-duration daytime TEC enhancements that lasted from 7 to 12 September 2017 were observed by the Beidou geostationary orbit satellite constellation. This is a unique event as the prominent TEC enhancement ...

Lei, Jiuhou; Huang, Fuqing; Chen, Xuetao; Zhong, Jiahao; Ren, Dexin; Wang, Wenbin; Yue, Xinan; Luan, Xiaoli; Jia, Mingjiao; Dou, Xiankang; Hu, Lianhuan; Ning, Baiqi; Owolabi, Charles; Chen, Jinsong; Li, Guozhu; Xue, Xianghui;

YEAR: 2018     DOI: 10.1029/2017JA025166

2017

Impact of the lower thermospheric winter-to-summer residual circulation on thermospheric composition

Gravity wave forcing near the mesopause drives a summer-to-winter residual circulation in the mesosphere and a reversed, lower thermospheric winter-to-summer residual circulation. We conducted modeling studies to investigate how this lower thermospheric residual circulation impacts thermospheric composition (O/N2). We found that the upwelling associated with the residual circulation significantly decreases O/N2 in winter and the downwelling in summer slightly increases O/N2. Consequently, ...

Qian, Liying; Yue, Jia;

YEAR: 2017     DOI: 10.1002/2017GL073361

2016

Impacts of SABER CO 2 -based eddy diffusion coefficients in the lower thermosphere on the ionosphere/thermosphere

This work estimates global-mean Kzz using Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics monthly global-mean CO2 profiles and a one-dimensional transport model. It is then specified as a lower boundary into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). Results first show that global-mean CO2 in the mesosphere and lower thermosphere region has annual and semiannual oscillat ...

Salinas, Cornelius; Chang, Loren; Liang, Mao-Chang; Yue, Jia; Russell, James; Mlynczak, Martin;

YEAR: 2016     DOI: 10.1002/2016JA023161

Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm

In this paper, an ionospheric electron density reanalysis algorithm was used to generate global optimized electron density during the 17\textendash18 March 2013 geomagnetic storm by assimilating ~10 low Earth orbit satellites based and ~450 ground global navigation satellite system receiver-based total electron content into a background ionospheric model. The reanalyzed electron density could identify the large-scale ionospheric features quite well during storm time, including the storm-enhanced density, the positive iono ...

Yue, Xinan; Wang, Wenbin; Lei, Jiuhou; Burns, Alan; Zhang, Yongliang; Wan, Weixing; Liu, Libo; Hu, Lianhuan; Zhao, Biqiang; Schreiner, William;

YEAR: 2016     DOI: 10.1002/jgra.v121.910.1002/2016JA022984

Coherent seasonal, annual, and quasi-biennial variations in ionospheric tidal/SPW amplitudes

In this study, we examine the coherent spatial and temporal modes dominating the variation of selected ionospheric tidal and stationary planetary wave (SPW) signatures from 2007 to 2013 FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) total electron content observations using multidimensional ensemble empirical mode decomposition (MEEMD) from the Hilbert-Huang Transform. We examine the DW1, SW2, DE3, and SPW4 components, which are driven by a variety of in situ and vertical coupl ...

Chang, Loren; Sun, Yan-Yi; Yue, Jia; Wang, Jack; Chien, Shih-Han;

YEAR: 2016     DOI: 10.1002/2015JA022249

Long-duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm

Topside ionospheric total electron content (TEC) observations from multiple low-Earth orbit (LEO) satellites have been used to investigate the local time, altitudinal, and longitudinal dependence of the topside ionospheric storm effect during both the main and recovery phases of the March 2015 geomagnetic storm. The results of this study show, for the first time, that there was a persistent topside TEC depletion that lasted for more than 3 days after the storm main phase at most longitudes, except in the Pacific Ocean reg ...

Zhong, Jiahao; Wang, Wenbin; Yue, Xinan; Burns, Alan; Dou, Xiankang; Lei, Jiuhou;

YEAR: 2016     DOI: 10.1002/2016JA022469

2015

Explaining solar cycle effects on composition as it relates to the winter anomaly

The solar cycle variation of\ F2\ region winter anomaly is related to solar cycle changes in the latitudinal winter-to-summer difference of O/N2. Here we use the National Center for Atmospheric Research\textendashGlobal Mean Model to develop a concept of why the latitudinal winter-to-summer difference of O/N2\ varies with solar cycle. The main driver for these seasonal changes in composition is vertical advection, which is expressed most simply in pressure coordinat ...

Burns, A.; Solomon, S.; Wang, W.; Qian, L.; Zhang, Y.; Paxton, L.; Yue, X.; Thayer, J.; Liu, H.;

YEAR: 2015     DOI: 10.1002/2015JA021220

composition; solar cycle; upper atmosphere

Ionosphere equatorial ionization anomaly observed by GPS radio occultations during 2006\textendash2014

A large number of Global Position System (GPS) radio occultation (RO) observations have been accumulated in the University Corporation for Atmospheric Research (UCAR) Constellation Observation System for Meteorology, Ionosphere and Climate (COSMIC) Data Analysis and Archive Center (CDAAC) especially since the launch of COSMIC mission. This study made use of these RO data to study the morphology of ionosphere equatorial ionization anomaly (EIA) statistically during 2006\textendash2014. The ionospheric peak density (NmF2) a ...

Yue, Xinan; Schreiner, William; Kuo, Ying-Hwa; Lei, Jiuhou;

YEAR: 2015     DOI: 10.1016/j.jastp.2015.04.004

Ionospheric response to CIR-induced recurrent geomagnetic activity during the declining phase of solar cycle 23

This paper presents an epoch analysis of global ionosphere responses to recurrent geomagnetic activity during 79 corotating interaction region (CIR) events from 2004 to 2009. The data used were GPS total electron content (TEC) data from the Madrigal Database at the Massachusetts Institute of Technology Haystack Observatory and the electron density (Ne) data obtained from CHAllenging Minisatellite Payload (CHAMP) observations. The results show that global ionosphere responses to CIR events have some common features. In hig ...

Chen, Yanhong; Wang, Wenbin; Burns, Alan; Liu, Siqing; Gong, Jiancun; Yue, Xinan; Jiang, Guoying; Coster, Anthea;

YEAR: 2015     DOI: 10.1002/2014JA020657

CIR events; epoch study; Ionospheric response; recurrent geomagnetic activity

Longitudinal variations of the nighttime E layer electron density in the auroral zone

Longitudinal variations of the nighttime E layer electron density (21:00\textendash03:00 magnetic local time) in the auroral zone are investigated, and their sources are discussed in terms of auroral precipitation and solar radiation. The electron density data used in this study are retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation observations during 2006\textendash2009 under quiet geomagnetic activity (Kp <= 3) and solar minimum conditions. The mai ...

Luan, Xiaoli; Wang, Wenbin; Dou, Xiankang; Burns, Alan; Yue, Xinan;

YEAR: 2015     DOI: 10.1002/2014JA020610

auroral E layer; hemispheric asymmetry; longitudinal variations; Seasonal variations

Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere

In the current work, temperature and wind data from the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite during the years 2002\textendash2007 were used to describe the seasonal variations of the westward propagating 6.5-day planetary wave in the mesosphere and lower thermosphere (MLT). Thermospheric composition data from the TIMED satellite and ionospheric total electron content (TEC) from the International Global Navigation Satellite System (GNSS) Service were then employed to carry out two ca ...

Gan, Q.; Yue, J.; Chang, L.; Wang, W.; Zhang, S.; Du, J.;

YEAR: 2015     DOI: 10.5194/angeo-33-913-2015

2014

Height-integrated Pedersen conductivity in both E and F regions from COSMIC observations

Altitudinal distribution of Joule heating is very important to the thermosphere and ionosphere, which is roughly proportional to the Pedersen conductance at high latitudes. Based on the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites observations from 2008 to 2011, the height-integrated Pedersen conductivities in both E (100\textendash150\ km) and F (150\textendash600\ km) regions and their ratio γPγP (PE/< ...

Sheng, Cheng; Deng, Yue; Yue, Xinan; Huang, Yanshi;

YEAR: 2014     DOI: 10.1016/j.jastp.2013.12.013

COSMIC; Interhemispheric asymmetry; Joule heating; Pedersen conductivity

Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere

Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)\textemdasha planetary wave that recurrently grows to large amplitudes from the summer MLT duri ...

Chang, Loren; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R.;

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019936

composition; Ionosphere; mesosphere; quasi two day wave; thermosphere

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity

Responses of the lower thermospheric temperature to the 9 day and 13.5 day oscillations of recurrent geomagnetic activity and solar EUV radiation have been investigated using neutral temperature data observed by the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) instrument and numerical experiments by the NCAR-TIME-GCM (National Center for Atmospheric Research\textendashthermosphere-ionosphere-mesosphere electrodynamics\textendashgene ...

Jiang, Guoying; Wang, Wenbin; Xu, JiYao; Yue, Jia; Burns, Alan; Lei, Jiuhou; Mlynczak, Martin; Rusell, James;

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2013JA019406

13.5 day variation; 9 day variation; Joule heating; lower thermospheric temperature; recurrent geomagnetic activity; solar EUV radiation

On the solar cycle variation of the winter anomaly

Constellation Observing System for Meteorology, Ionosphere and Climate, Ionosonde, and Global Ultraviolet Imager data have been used to investigate the solar cycle changes in the winter anomaly (the winter anomaly is defined as the enhancement of the F2 peak electron density in the winter hemisphere over that in the summer hemisphere) in the last solar cycle. There is no winter anomaly in solar minimum, and an enhancement of about 50\% in winter over summer ones on the same day of the year at solar max ...

Burns, A.; Wang, W.; Qian, L.; Solomon, S.; Zhang, Y.; Paxton, L.; Yue, X.;

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2013JA019552

Anomaly; Cycle; Ionosphere

2013

On the fast zonal transport of the STS-121 space shuttle exhaust plume in the lower thermosphere

Meier et al. (2011) reported rapid eastward transport of the STS-121 space shuttle (launch: July 4, 2006) main engine plume in the lower thermosphere, observed in hydrogen Lyman α images by the GUVI instrument onboard the TIMED satellite. In ord ...

Yue, Jia; Liu, Han-Li; Meier, R.R.; Chang, Loren; Gu, Sheng-Yang; , Russell;

YEAR: 2013     DOI: 10.1016/j.jastp.2012.12.017

Modeling; thermosphere; Transport; Wind jet

GNSS radio occultation (RO) derived electron density quality in high latitude and polar region: NCAR-TIEGCM simulation and real data evaluation

Global Navigation Satellite System (GNSS) based radio occultation (RO) technique has shown powerful ability in ionospheric electron density profiling in the past decade. The most frequently used Abel inversion method in electron density retrieval has some biases because of the used spherical symmetry assumption. Our previous series simulations and evaluations mainly concentrated in the middle and low latitude regions have shown some systematical bias especially in lower altitude of low latitude region. However, the RO der ...

Yue, Xinan; Schreiner, William; Kuo, Ying-Hwa; Wu, Qian; Deng, Yue; Wang, Wenbin;

YEAR: 2013     DOI: 10.1016/j.jastp.2013.03.009

Abel inversion; AURORA; COSMIC; Electron density; GNSS radio occultation; TIEGCM

East-west differences in F -region electron density at midlatitude: Evidence from the Far East region

The global configuration of the geomagnetic field shows that the maximum east-west difference in geomagnetic declination of northern middle latitude lies in the US region (~32\textdegree), which produces the significant ionospheric east-west coast difference in terms of total electron content first revealed by Zhang et al. (2011). For verification, it is valuable to investigate this feature over the Far East area, which also shows significant geomagnetic declination east-west gradient but smaller (~15\textdegree) than tha ...

Zhao, Biqiang; Wang, Min; Wang, Yungang; Ren, Zhipeng; Yue, Xinan; Zhu, Jie; Wan, Weixing; Ning, Baiqi; Liu, Jing; Xiong, Bo;

YEAR: 2013     DOI: 10.1029/2012JA018235

geomagnetic declination; longitudinal variation; midlatitude ionosphere

2010

Fast meridional transport in the lower thermosphere by planetary-scale waves

Yue, Jia; Liu, Han-Li;

YEAR: 2010     DOI: 10.1016/j.jastp.2010.10.001

Correlation between the ionospheric WN4 signature and the upper atmospheric DE3 tide

Wan, W.; Xiong, J.; Ren, Z.; Liu, L.; Zhang, M.-L.; Ding, F.; Ning, B.; Zhao, B.; Yue, X.;

YEAR: 2010     DOI: 10.1029/2010JA015527

Ionosphere around equinoxes during low solar activity

Liu, Libo; He, Maosheng; Yue, Xin\textquoterightan; Ning, Baiqi; Wan, Weixing;

YEAR: 2010     DOI: 10.1029/2010JA015318



  1