Notice:
|
Found 24 entries in the Bibliography.
Showing entries from 1 through 24
2022 |
Chapter 4 - Energetic particle dynamics, precipitation, and conductivity This chapter reviews cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system via convection, precipitation, and conductance. It begins with an introduction into Earth’s plasma sheet characteristics including particles, plasma moments, and magnetic fields, and their dependence on solar wind and interplanetary magnetic field parameters. Section 4.2 transitions to observations of the magnetosphere convection, precipitation, and coupling with the ionosphere on multiple scales, with Section ... Gabrielse, Christine; Kaeppler, Stephen; Lu, Gang; Wang, Chih-Ping; Yu, Yiqun; Nishimura, Yukitoshi; Verkhoglyadova, Olga; Deng, Yue; Zhang, Shun-Rong; Published by: Published on: jan YEAR: 2022   DOI: 10.1016/B978-0-12-821366-7.00002-0 Conductance; Conductivity; Convection; particle precipitation |
2019 |
As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of phys ... Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; Liemohn, Michael; Weygand, James; Crowley, Geoffrey; Merkin, Viacheslav; McGranaghan, Ryan; Mannucci, Anthony; Published by: Space Weather Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018SW002127 |
Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; , others; Published by: Space Weather Published on: |
2018 |
Improving modeling of the ionosphere-thermosphere (IT) energy budget is important for correct representation of the IT system and physics-based space weather forecasting. We present a framework for estimation of the IT energy budget with the physics-based Global Ionosphere-Thermosphere Model (GITM), empirical models and observations. The approach is illustrated for the 16-19 March 2013 and 2015 geomagnetic storms. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are utilized to drive GITM. We focus on co ... Verkhoglyadova, Olga; Meng, Xing; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Lu, Gang; Published by: 2018 Triennial Earth-Sun Summit (TESS Published on: |
Verkhoglyadova, Olga; Mlynczak, MG; Mannucci, Anthony; Paxton, Larry; Hunt, Linda; Komjathy, Attila; Published by: 42nd COSPAR Scientific Assembly Published on: |
Observational aspects of the IT energy budget at the multi-scales
Verkhoglyadova, OP; Meng, X; Mannucci, AJ; McGranaghan, R; Published by: Published on: |
2017 |
We revisit three complex superstorms of 19\textendash20 November 2003, 7\textendash8 November 2004, and 9\textendash11 November 2004 to analyze ionosphere-thermosphere (IT) effects driven by different solar wind structures associated with complex interplanetary coronal mass ejections (ICMEs) and their upstream sheaths. The efficiency of the solar wind-magnetosphere connection throughout the storms is estimated by coupling functions. The daytime IT responses to the complex driving are characterized by combining and colloca ... Verkhoglyadova, O.; Komjathy, A.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/jgra.v122.1010.1002/2017JA024542 |
The ionosphere-thermosphere (IT) energy partitioning for the interplanetary coronal mass ejection (ICME) storms of 16\textendash19 March 2013 and 2015 is estimated with the Global Ionosphere-Thermosphere Model (GITM), empirical models and proxies derived from in situ measurements. We focus on auroral heating, Joule heating, and thermospheric cooling. Solar wind data, F10.7, OVATION Prime model and the Weimer 2005 model are used to drive GITM from above. Thermospheric nitric oxide and carbon dioxide coo ... Verkhoglyadova, O.; Meng, X.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Lu, G.; Published by: Space Weather Published on: 08/2017 YEAR: 2017   DOI: 10.1002/swe.v15.910.1002/2017SW001650 |
Geospace system responses to the St. Patrick's Day storms in 2013 and 2015 This special collection includes 31 research papers investigating geospace system responses to the geomagnetic storms during the St. Patrick\textquoterights Days of 17 March 2013 and 2015. It covers observation, data assimilation, and modeling aspects of the storm time phenomena and their associated physical processes. The ionosphere and thermosphere as well as their coupling to the magnetosphere are clearly the main subject areas addressed. This collection provides a comprehensive picture of the geospace response to thes ... Zhang, Shun-Rong; Zhang, Yongliang; Wang, Wenbin; Verkhoglyadova, Olga; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2017 YEAR: 2017   DOI: 10.1002/2017JA024232 |
We present a multiinstrumented approach for the analysis of the Arctic ionosphere during the 19 February 2014 highly complex, multiphase geomagnetic storm, which had the largest impact on the disturbance storm-time index that year. The geomagnetic storm was the result of two powerful Earth-directed coronal mass ejections (CMEs). It produced a strong long lasting negative storm phase over Greenland with a dominant energy input in the polar cap. We employed global navigation satellite system (GNSS) networks, geomagnetic obs ... Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard; Published by: Radio Science Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016RS006106 |
Verkhoglyadova, Olga; Komjathy, Attila; Mannucci, Anthony; Mlynczak, Martin; Hunt, Linda; Paxton, Larry; Published by: Published on: |
2016 |
We identify interplanetary plasma regions associated with three intense interplanetary coronal mass ejections (ICMEs)-driven geomagnetic storm intervals which occurred around the same time of the year: day of year 74\textendash79 (March) of 2012, 2013, and 2015. We show that differences in solar wind drivers lead to different dynamical ionosphere-thermosphere (IT) responses and to different preconditioning of the IT system. We introduce a new hourly based global metric for average low-latitude and northern middle-latitude ... Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Paxton, L.; Komjathy, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.910.1002/2016JA022883 |
Heliosphere-ionosphere-thermosphere coupling and energy budget in geomagnetic storms 1. Solar irradiance: F10. 7 2. High-latitude electric and magnetic field potential patterns and field-aligned currents (FAC): empirical Weimer05 model (Weimer, 2005), can use AMIE input Verkhoglyadova, OP; Mannucci, AJ; Meng, X; Komjathy, A; Mlynczak, MG; Hunt, LA; Tsurutani, BT; Published by: Published on: |
Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Hoeg, Per; Paul, Ashik; Published by: Published on: |
Multi-Instrument Observations of Geomagnetic Storms in the Arctic Ionosphere
Durgonics, Tibor; Komjathy, Attila; Verkhoglyadova, Olga; Shume, Esayas; Benzon, Hans-Henrik; Mannucci, Anthony; Butala, Mark; H\oeg, Per; Langley, Richard; Published by: Published on: |
2015 |
Use of radio occultation to probe the high-latitude ionosphere We have explored the use of COSMIC data to provide valuable scientific information on the ionospheric impacts of energetic particle precipitation during geomagnetic storms. Ionospheric electron density in the E region, and hence ionospheric conductivity, is significantly altered by precipitating particles from the magnetosphere. This has global impacts on the thermosphere\textendashionosphere because of the important role of conductivity on high-latitude Joule heating. Two high-speed stream (HSS) and two coronal mass ejec ... Mannucci, A.; Tsurutani, B.; Verkhoglyadova, O.; Komjathy, A.; Pi, X.; Published by: Atmospheric Measurement Techniques Published on: 07/2015 YEAR: 2015   DOI: 10.5194/amt-8-2789-2015 |
Natural hazards generate waves in the thermosphere and ionosphere that may be detected using ground and space-based GPS observations. There is an abundance of current and future GNSS signals that we can use in a real-time and post-processing modes. Verkhoglyadova, AJ; Langley, RB; Published by: Published on: |
Solar wind driving of ionosphere-thermosphere responses during three storms on St. Patrick's Day.
Verkhoglyadova, Olga; Tsurutani, Bruce; Mannucci, Anthony; Komjathy, Attila; Mlynczak, Martin; Hunt, Linda; Paxton, Larry; Published by: Published on: |
2014 |
Large magnitude increases in ionospheric total electron content (TEC) that occur over 1\textendash3\ h on the dayside are a significant manifestation of the main phases of superstorms. For the largest superstorms of solar cycle 23 (based on the Dst index), ground networks of GPS receivers measured peak total electron content increases greater than a factor of 2 relative to quiet time TEC averaged over the broad latitude band \textpm40\textdegree for local times 1200\textendash1600\ LT. Near 30\textdegre ... Mannucci, A.J.; Crowley, G.; Tsurutani, B.T.; Verkhoglyadova, O.P.; Komjathy, A.; Stephens, P.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 08/2014 YEAR: 2014   DOI: 10.1016/j.jastp.2014.01.001 |
A series of four geomagnetic storms (the minimum SYM-H~-148\ nT) occurred during the March 6\textendash17, 2012 in the ascending phase of the solar cycle 24. This interval was selected by CAWSES II for its campaign. The GPS total electron content (TEC) database and JPL\textquoterights Global Ionospheric Maps (GIM) were used to study vertical TEC (VTEC) for different local times and latitude ranges. The largest response to geomagnetic activity is shown in increases of the low-latitude dayside VTEC. Several GPS sites f ... Verkhoglyadova, O.P.; Tsurutani, B.T.; Mannucci, A.J.; Mlynczak, M.G.; Hunt, L.A.; Paxton, L.J.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 08/2014 YEAR: 2014   DOI: 10.1016/j.jastp.2013.11.009 |
Solar filament impact on 21 January 2005: Geospace consequences On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the mas ... Kozyra, J.; Liemohn, M.; Cattell, C.; De Zeeuw, D.; Escoubet, C.; Evans, D.; Fang, X.; Fok, M.-C.; Frey, H.; Gonzalez, W.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W.; Mende, S.; Paxton, L.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M.; Tsurutani, B.; Verkhoglyadova, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2014 YEAR: 2014   DOI: 10.1002/2013JA019748 cold dense plasma sheet; Equatorial anomaly; magnetotail; precipitation; prompt penetration electric field; solar filament |
2013 |
We study solar wind\textendashionosphere coupling through the late declining phase/solar minimum and geomagnetic minimum phases during the last solar cycle (SC23) \textendash 2008 and 2009. This interval was characterized by sequences of high-speed solar wind streams (HSSs). The concomitant geomagnetic response was moderate geomagnetic storms and high-intensity, long-duration continuous auroral activity (HILDCAA) events. The JPL Global Ionospheric Map (GIM) software and the GPS total electron content (TEC) database were u ... Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Runge, T.; Published by: Annales Geophysicae Published on: 01/2013 YEAR: 2013   DOI: 10.5194/angeo-31-263-2013 |
Comparison of Ionospheric and Thermospheric Effects During Two High Speed Stream Events
Verkhoglyadova, OP; Tsurutani, B; Mannucci, AJ; Paxton, L; Mlynczak, MG; Hunt, LA; Echer, E; Published by: Published on: |
2011 |
Verkhoglyadova, O.; Tsurutani, B.; Mannucci, A.; Mlynczak, M.; Hunt, L.; Komjathy, A.; Runge, T.; Published by: Journal of Geophysical Research Published on: Jan-01-2011 YEAR: 2011   DOI: 10.1029/2011JA016604 |
1