GUVI Biblio


  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.

Found 5 entries in the Bibliography.

Showing entries from 1 through 5


Solar filament impact on 21 January 2005: Geospace consequences

On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the mas ...

Kozyra, J.; Liemohn, M.; Cattell, C.; De Zeeuw, D.; Escoubet, C.; Evans, D.; Fang, X.; Fok, M.-C.; Frey, H.; Gonzalez, W.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W.; Mende, S.; Paxton, L.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M.; Tsurutani, B.; Verkhoglyadova, O.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2013JA019748

cold dense plasma sheet; Equatorial anomaly; magnetotail; precipitation; prompt penetration electric field; solar filament

OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels

OVATION Prime (OP) is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power significantly better than\ Kp\ or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each magnetic latitu ...

Newell, P.; Liou, K.; Zhang, Y.; Sotirelis, T.; Paxton, L.; Mitchell, E.;

Published by: Space Weather      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/swe.v12.610.1002/2014SW001056

AURORA; precipitation; forecasting

Statistical relationship between large-scale upward field-aligned currents and electron precipitation

Simultaneous observations of Birkeland currents by the constellation of Iridium satellites and N2 Lyman\textendashBirge\textendashHopfield (LBH) auroral emissions measured by the Global Ultraviolet Imager (GUVI) onboard the Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) satellite are used to establish relationships between large-scale upward field-aligned currents and electron precipitation during stable current configurations. The electron precipitation was inferred from GUVI data using a statis ...

Korth, Haje; Zhang, Yongliang; Anderson, Brian; Sotirelis, Thomas; Waters, Colin;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2014     DOI: 10.1002/2014JA019961

Birkeland Currents; Auroral Emissions; electron precipitation; Current-Precipitation Relationship; Current-Voltage Relationship


Empirical relationship between electron precipitation and far-ultraviolet auroral emissions from DMSP observations

Auroral emissions observed in the far-ultraviolet wavelength range are compared with measurements of the coincident precipitating electrons and ions that produce the emissions in a large-scale correlative study. The auroral emissions and particle precipitation are observed with the Special Sensor Ultraviolet Spectrographic Imager and SSJ5 detectors, respectively, both onboard the DMSP F16 satellite. Coincident observations along the same magnetic field line in the Northern Hemisphere are assembled from two consecutive win ...

Sotirelis, Thomas; Korth, Haje; Hsieh, Syau-Yun; Zhang, Yongliang; Morrison, Daniel; Paxton, Larry;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2013

YEAR: 2013     DOI: 10.1002/jgra.50157

DMSP; electron aurora; electron precipitation; FUV Aurora


Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images

Newell, P.; Sotirelis, T.; Liou, K.; Lee, A.; Wing, S.; Green, J.; Redmon, R.;

Published by: Space Weather      Published on: Jan-01-2010

YEAR: 2010     DOI: 10.1029/2010SW000604