GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 4 entries in the Bibliography.


Showing entries from 1 through 4


2022

Solar and interplanetary events that drove two CIR-related geomagnetic storms of 1 June 2013 and 7 October 2015, and their ionospheric responses at the American and African equatorial ionization Anomaly regions

This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ...

Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: mar

YEAR: 2022     DOI: 10.1016/j.asr.2021.12.027

geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities

2021

Responses of the Indian Equatorial Ionization Anomaly to two CME-induced geomagnetic storms during the peak phase of solar cycle 24

This work analyzes the geo-effectiveness of Coronal Mass Ejection- (CME-) induced storms by investigating the responses of ionospheric Vertical Total Electron Content (VTEC) and the Equatorial Ionization Anomaly (EIA) over the Indian sector to two storms. One of the storms occurred on February 19, 2014 (SYM-H: −120 nT), while the other occurred on June 23, 2015 (SYM-H: −204 nT). Both storms were driven by full halo CMEs. Global TEC maps were used to characterize VTEC variations during the storms. June 23, 2015 storm was ...

Simi, K.; Akala, A.; Krishna, Siva; Amaechi, Paul; Ogwala, Aghogho; Ratnam, Venkata; Oyedokun, O.;

Published by: Advances in Space Research      Published on: oct

YEAR: 2021     DOI: 10.1016/j.asr.2021.06.013

Coronal mass ejection; Disturbance dynamo electric field; geomagnetic storm; prompt penetration electric field; total electron content

Responses of the African equatorial ionization anomaly (EIA) to some selected intense geomagnetic storms during the maximum phase of solar cycle 24

This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ −100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time beh ...

Oyedokun, O.; Akala, A.; Oyeyemi, E.;

Published by: Advances in Space Research      Published on: feb

YEAR: 2021     DOI: 10.1016/j.asr.2020.11.020

African equatorial ionization anomaly; geomagnetic storm; GNSS; Ionosphere

Solar Origins of August 26, 2018 Geomagnetic Storm: Responses of the Interplanetary Medium and Equatorial/Low-Latitude Ionosphere to the Storm

This study investigates the solar origins of August 26, 2018 geomagnetic storm and the responses of the interplanetary medium and equatorial/low-latitude ionosphere to it. We used a multiinstrument approach, with observations right from the solar surface to the Earth. Our results showed that the G3 geomagnetic storm of August 26, 2018 was initiated by a solar filament eruption of August 20, 2018. The storm was driven by an aggregation of weak Coronal Mass Ejection (CME) transients and Corotating Interaction Regions/High Spee ...

Akala, A.; Oyedokun, O.; Amaechi, P.; Simi, K.; Ogwala, A.; Arowolo, O.;

Published by: Space Weather      Published on:

YEAR: 2021     DOI: 10.1029/2021SW002734



  1