Notice:
|
Found 189 entries in the Bibliography.
Showing entries from 1 through 50
2022 |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
We present the results of study on the variations of ionospheric total electron content (TEC) by using global, hemispheric, and regional electron contents computed from the global ionospheric maps (GIMs) for the period from 1999 to 2020. For a low and moderate solar activity, the global and regional electron contents vary linearly with solar 10.7 cm radio flux and EUV flux. While a saturation effect in the electron content verses EUV and F10.7 is found during the high solar activity periods at all regions, the maximum effec ... Younas, Waqar; Amory-Mazaudier, C.; Khan, Majid; Amaechi, Paul; Published by: Advances in Space Research Published on: jul YEAR: 2022   DOI: 10.1016/j.asr.2022.07.029 annual variation; global electron content; Ionosphere; semi-annual variation; total electron content |
We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. It is found that the mid-latitudes region has exhibited a large decrease in ∑O/N2 during all the phases of the storms under consideration, which corresponds well to the observed negative storm effects. This decrea ... Younas, Waqar; Khan, Majid; Amory-Mazaudier, C.; Amaechi, Paul; Fleury, R.; Published by: Advances in Space Research Published on: jan YEAR: 2022   DOI: 10.1016/j.asr.2021.10.027 CTIPe model; Disturbed ∑O/N; GUVI/TIMED data; Hemispheric asymmetries; REC |
Scintillation due to ionospheric plasma irregularities remains a challenging task for the space science community as it can severely threaten the dynamic systems relying on space-based navigation services. In the present paper, we probe the ionospheric current and plasma irregularity characteristics from a latitudinal arrangement of magnetometers and Global Navigation Satellite System (GNSS) stations from the equator to the far low latitude location over the Indian longitudes, during the severe space weather events of 6–10 ... Vankadara, Ram; Panda, Sampad; Amory-Mazaudier, Christine; Fleury, Rolland; Devanaboyina, Venkata; Pant, Tarun; Jamjareegulgarn, Punyawi; Haq, Mohd; Okoh, Daniel; Seemala, Gopi; Published by: Remote Sensing Published on: jan YEAR: 2022   DOI: 10.3390/rs14030652 space weather; equatorial plasma bubbles; ionospheric irregularity; global navigation satellite system; magnetometer; poleward drift; rate of change of TEC index; scintillations; storm-time electric currents |
Effect of Weak Magnetic Storms on the Propagation of HF Radio Waves Vertical and oblique sounding data for northeastern Russia have been used to analyze the conditions for the propagation of radio waves during weak geomagnetic storms observed in fall seasons of 2018–2020 at minimal solar activity. Even during weak storms, the maximum observed frequencies have been found to decrease by 25–35\% in daytime and by 40–50\% at night. Variations in the parameters of the distribution of high frequency radio waves during disturbances depend on the spatio-temporal dynamics of large scale structu ... Kurkin, V.; Polekh, N.; Zolotukhina, N.; Published by: Geomagnetism and Aeronomy Published on: feb YEAR: 2022   DOI: 10.1134/S0016793222020116 |
This paper investigates the diurnal variations of modelled and observed Vertical Total Electron Content (VTEC) over the African region (40oN to+ 40oS, 25oW to 65oE) obtained from Devanaboyina, Venkata; , others; Published by: Published on: YEAR: 2022   DOI: 10.21203/rs.3.rs-1695991/v1 |
The 15 January 2022 Hunga Tonga Eruption History as Inferred From Ionospheric Observations On 15 January 2022, the Hunga Tonga-Hunga Ha’apai submarine volcano erupted violently and triggered a giant atmospheric shock wave and tsunami. The exact mechanism of this extraordinary eruptive event, its size and magnitude are not well understood yet. In this work, we analyze data from the nearest ground-based receivers of Global Navigation Satellite System to explore the ionospheric total electron content (TEC) response to this event. We show that the ionospheric response consists of a giant TEC increase followed by a s ... Astafyeva, E.; Maletckii, B.; Mikesell, T.; Munaibari, E.; Ravanelli, M.; Coisson, P.; Manta, F.; Rolland, L.; Published by: Geophysical Research Letters Published on: YEAR: 2022   DOI: 10.1029/2022GL098827 co-volcanic ionospheric disturbances; eruption timeline; GNSS; Hunga Tonga eruption; Ionosphere; ionospheric geodesy |
We utilize Total Electron Content (TEC) measurements and electron density (Ne) retrieval profiles from Global Navigation Satellite System (GNSS) receivers onboard multiple Low Earth Orbit (LEO) satellites to characterize large-scale ionosphere-thermosphere system responses during geomagnetic storms. We also analyze TEC measurements from GNSS receivers in a worldwide ground-based network. Measurements from four storms during June and July 2012 (boreal summer months), December 2015 (austral summer month), and March 2015 (equin ... Swarnalingam, N.; Wu, D.; Gopalswamy, N.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2021JA030247 |
Ionospheric Disturbances and Irregularities during the 25--26 August 2018 Geomagnetic Storm We use ground-based (GNSS, SuperDARN, and ionosondes) and space-borne (Swarm, CSES, and DMSP) instruments to study ionospheric disturbances due to the 25–26 August 2018 geomagnetic storm. The strongest large-scale storm-time enhancements were detected over the Asian and Pacific regions during the main and early recovery phases of the storm. In the American sector, there occurred the most complex effects caused by the action of multiple drivers. At the beginning of the storm, a large positive disturbance occurred over North ... Astafyeva, E.; Yasyukevich, Y.; Maletckii, B.; Oinats, A.; Vesnin, A.; Yasyukevich, A.; Syrovatskii, S.; Guendouz, N.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2022   DOI: 10.1029/2021JA029843 Geomagnetic storms; Ionosphere; ROTI; ionospheric disturbances; ionospheric irregularities; multi-instrumental approach |
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late Octo ... Ranjan, Alok; Krishna, MV; Kumar, Akash; Sarkhel, Sumanta; Bharti, Gaurav; Bender, Stefan; Sinnhuber, Miriam; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2022.07.035 |
Climatology of O/N2 Variations at Low-and Mid-Latitudes during Solar Cycles 23 and 24 We present a study concerning the thermospheric O/N2 variations for the period 2002 to 2020, using the measurements of global ultraviolet imager (GUVI) onboard TIMED satellite. In this regard, monthly averaged O/N2 was computed—using the five quietest days of the month—at low- and mid-latitudes. To find the longitudinal dependence of thermospheric variations, the analysis is further extended to different longitudinal sectors, namely Asia, Africa, and America. We found that the latitudinal and longitudinal O/N2 variations ... Khan, Jahanzeb; Younas, Waqar; Khan, Majid; Amory-Mazaudier, Christine; Published by: Atmosphere Published on: YEAR: 2022   DOI: 10.3390/atmos13101645 |
This study presents ionospheric responses of the mid and low-latitude region in the Europe-African longitude sector (along 30 +/- 10 deg E) to the intense geomagnetic storm of 23–31 August 2018 (SYM-Hmin = −207 nT) using the Global Ionospheric Map (GIM) and Global Positioning System (GPS) receivers data, the satellite data (SWARM, Defense Meteorological Satellite Program (DMSP), Global Ultraviolet Imager on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (GUVI/TIMED)), and Prompt Penetration Equato ... Dugassa, Teshome; Mezgebe, Nigussie; Habarulema, John; Habyarimana, Valence; Oljira, Asebe; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2022.10.063 |
We have investigated the global hemispheric differences in thermospheric ∑O/N2 and its impact on the ionospheric total electron content (TEC) at mid- and low-latitudes. Four intense storms of solar cycle 24 (SC-24) have been considered, three of them occurred in Spring equinox and one in Summer solstice season. Younas, Waqar; Khan, Majid; Amory-Mazaudier, C; Amaechi, Paul; Fleury, R; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2021.10.027 |
Scintillations of transionospheric satellite signals during geomagnetic storms can severely threaten navigation accuracy and the integrity of space assets. We analyze vertical Total Shahzad, Rasim; Shah, Munawar; Abbas, Ayesha; Hafeez, Amna; Calabia, Andres; Melgarejo-Morales, Angela; Naqvi, Najam; Published by: Annales Geophysicae Discussions Published on: YEAR: 2022   DOI: 10.5194/angeo-2022-18 |
2021 |
Ion temperature data recorded by Millstone Hill incoherent scatter radar (42.61° N, 288.51° E) over four full solar cycles (from 1970 to 2018) are analyzed to depict its climatological behavior in the range of altitudes between 100 and 550 km. The ion temperature dependencies on altitude, local time, month of the year, and solar activity level are studied through a climatological analysis based on binning and boxplot representation of statistical values. Binned observations of ion temperature are compared with Internation ... Pignalberi, Alessio; Aksonova, Kateryna; Zhang, Shun-Rong; Truhlik, Vladimir; Gurram, Padma; Pavlou, Charalambos; Published by: Advances in Space Research Published on: sep YEAR: 2021   DOI: 10.1016/j.asr.2020.10.025 Climatological analysis; International Reference Ionosphere model; ion temperature; Millstone Hill incoherent scatter radar |
This work analyzes the geo-effectiveness of Coronal Mass Ejection- (CME-) induced storms by investigating the responses of ionospheric Vertical Total Electron Content (VTEC) and the Equatorial Ionization Anomaly (EIA) over the Indian sector to two storms. One of the storms occurred on February 19, 2014 (SYM-H: −120 nT), while the other occurred on June 23, 2015 (SYM-H: −204 nT). Both storms were driven by full halo CMEs. Global TEC maps were used to characterize VTEC variations during the storms. June 23, 2015 storm was ... Simi, K.; Akala, A.; Krishna, Siva; Amaechi, Paul; Ogwala, Aghogho; Ratnam, Venkata; Oyedokun, O.; Published by: Advances in Space Research Published on: oct YEAR: 2021   DOI: 10.1016/j.asr.2021.06.013 Coronal mass ejection; Disturbance dynamo electric field; geomagnetic storm; prompt penetration electric field; total electron content |
This work analyzes the geo-effectiveness of Coronal Mass Ejection- (CME-) induced storms by investigating the responses of ionospheric Vertical Total Electron Content (VTEC) and the Equatorial Ionization Anomaly (EIA) over the Indian sector to two storms. One of the storms occurred on February 19, 2014 (SYM-H: −120 nT), while the other occurred on June 23, 2015 (SYM-H: −204 nT). Both storms were driven by full halo CMEs. Global TEC maps were used to characterize VTEC variations during the storms. June 23, 2015 storm was ... Simi, K.; Akala, A.; Krishna, Siva; Amaechi, Paul; Ogwala, Aghogho; Ratnam, Venkata; Oyedokun, O.; Published by: Advances in Space Research Published on: oct YEAR: 2021   DOI: 10.1016/j.asr.2021.06.013 Coronal mass ejection; Disturbance dynamo electric field; geomagnetic storm; prompt penetration electric field; total electron content |
Inferring thermospheric composition from ionogram profiles: a calibration with the TIMED spacecraft \textlessp\textgreater\textlessstrong class="journal-contentHeaderColor"\textgreaterAbstract.\textless/strong\textgreater We present a method for augmenting spacecraft measurements of thermospheric composition with quantitative estimates of daytime thermospheric composition below 200 \textlessspan class="inline-formula"\textgreaterkm\textless/span\textgreater, inferred from ionospheric data, for which there is a global network of ground-based stations. Measurements of thermospheric composition via ground-based instrumentatio ... Scott, Christopher; Jones, Shannon; Barnard, Luke; Published by: Annales Geophysicae Published on: mar YEAR: 2021   DOI: 10.5194/angeo-39-309-2021 |
In this paper, echo occurrence rates for the Dome C East (DCE) and the new Dome C North (DCN) radars are studied. We report the ionospheric and ground scatter echo occurrence rates for selected periods around equinoxes and solstices in the final part of the solar cycle XXIV. The occurrence maps built in Altitude Adjusted Corrected Geomagnetic latitude and Magnetic Local Time coordinates show peculiar patterns highly variable with season. The comparisons of the radar observations with the International Reference Ionosphere mo ... Marcucci, Maria; Coco, Igino; Massetti, Stefano; Pignalberi, Alessio; Forsythe, Victoriya; Pezzopane, Michael; Koustov, Alexander; Longo, Simona; Biondi, David; Simeoli, Enrico; Consolini, Giuseppe; Laurenza, Monica; Marchaudon, Aurélie; Satta, Andrea; Cirioni, Alessandro; De Simone, Angelo; Olivieri, Angelo; Baù, Alessandro; Salvati, Alberto; Published by: Polar Science Published on: jun YEAR: 2021   DOI: 10.1016/j.polar.2021.100684 |
B2 Thickness Parameter Response to Equinoctial Geomagnetic Storms The thickness parameters that most empirical models use are generally defined by empirical relations related to ionogram characteristics. This is the case with the NeQuick model that uses an inflection point below the F2 layer peak to define a thickness parameter of the F2 bottomside of the electron density profile, which is named B2. This study is focused on the effects of geomagnetic storms on the thickness parameter B2. We selected three equinoctial storms, namely 17 March 2013, 2 October 2013 and 17 March 2015. To invest ... Migoya-Orué, Yenca; Alazo-Cuartas, Katy; Kashcheyev, Anton; Amory-Mazaudier, Christine; Radicella, Sandro; Nava, Bruno; Fleury, Rolland; Ezquer, Rodolfo; Published by: Sensors Published on: jan YEAR: 2021   DOI: 10.3390/s21217369 Geomagnetic storms; total electron content; ionospheric empirical models; NeQuick model; thickness parameter |
\textlessp\textgreaterTopside ionospheric background distribution and its seasonal variations over China and its adjacent areas, e.g. 0°-54°N and 70°-140°E, are studied using the in situ electron density (Ne) measurements obtained by the LAP payload on board the ZH-1 (CSES) satellite. Results are as followings:(1) Regularities consistent with results from previous studies are shown on the latitudinal extension, longitudinal distribution, and seasonal variations of the EIA (Equatorial Ionization Anomaly) phenomenon in the ... XiuYing, Wang; DeHe, Yang; ZiHan, Zhou; Jing, C.; Na, Zhou; XuHui, Shen; Published by: Chinese Journal of Geophysics Published on: feb YEAR: 2021   DOI: 10.6038/cjg2021O0152 |
The changes in the ionosphere during geomagnetic disturbances is one of the prominent Space Weather effects on the near-Earth environment. The character of these changes can differ significantly at different regions on the Earth. We studied ionospheric response to five geomagnetic storms of March 2012, using data of Total Electron Content (TEC) and F2-layer critical frequency (foF2) along the meridian of 70° W in the Northern Hemisphere. There are few ionosondes along this longitudinal sector: in Thule, Sondrestrom, Millsto ... Sergeeva, Maria; Maltseva, Olga; Caraballo, Ramon; Gonzalez-Esparza, Juan; Corona-Romero, Pedro; Published by: Atmosphere Published on: feb YEAR: 2021   DOI: 10.3390/atmos12020164 foF2; geomagnetic storm; Ionospheric disturbance; ionospheric equivalent slab thickness; statistical analysis; TEC |
The capability of IRI-2016 in reproducing the hemispheric asymmetry, the winter and semiannual anomalies has been assessed over the equatorial ionization anomaly (EIA) during quiet periods of years 2013–2014. The EIA reconstructed using Total Electron Content (TEC) derived from Global Navigation Satellite System was compared with that computed using IRI-2016 along longitude 25° − 40oE. These were analyzed along with hemispheric changes in the neutral wind derived from the horizontal wind model and the TIMED GUVI columna ... Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew; Kaab, Mohamed; Younas, Waqar; Benkhaldoun, Zouhair; Khan, Majid; Mazaudier, Christine-Amory; Published by: Advances in Space Research Published on: aug YEAR: 2021   DOI: 10.1016/j.asr.2021.03.040 Equatorial ionization anomaly; hemispheric asymmetry; IRI-2016; Semiannual anomaly; Winter anomaly |
Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southe ... Moro, J.; Xu, J.; Denardini, C.; Resende, L.; Neto, P.; Da Silva, L.; Silva, R.; Chen, S.; Picanço, G.; Carmo, C.; Liu, Z.; Yan, C.; Wang, C.; Schuch, N.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2021   DOI: 10.1029/2020JA028663 Digisonde; Equatorial ionization anomaly; F-region; Ionospheric storm; SAMA; space weather |
On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian-Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics a ... Bolaji, O.; Fashae, J.; Adebiyi, S.; Owolabi, Charles; Adebesin, B.; Kaka, R.; Ibanga, Jewel; Abass, M.; Akinola, O.; Adekoya, B.; Younas, W.; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2021   DOI: 10.1029/2020JA029068 double-humped increase (DHI); equatorial ionization anomaly (EIA); prompt penetrating electric field (PPEF); storm time equatorward wind |
Inversion of Ionospheric O/N-2 by Using FY-3D Ionospheric Photometer Data
Da-xin, Wang; Li-ping, Fu; Fang, Jiang; Nan, Jia; Tian-fang, Wang; Shuang-tuan, Dou; Published by: SPECTROSCOPY AND SPECTRAL ANALYSIS Published on: |
We advance the modeling capability of electron particle precipitation from the magnetosphere to the ionosphere through a new database and use of machine learning (ML) tools to gain utility from those data. We have compiled, curated, analyzed, and made available a new and more capable database of particle precipitation data that includes 51 satellite years of Defense Meteorological Satellite Program (DMSP) observations temporally aligned with solar wind and geomagnetic activity data. The new total electron energy flux particl ... McGranaghan, Ryan; Ziegler, Jack; Bloch, Téo; Hatch, Spencer; Camporeale, Enrico; Lynch, Kristina; Owens, Mathew; Gjerloev, Jesper; Zhang, Binzheng; Skone, Susan; Published by: Space Weather Published on: YEAR: 2021   DOI: 10.1029/2020SW002684 space weather; magnetosphere-ionosphere coupling; data science; evaluation; machine learning; particle precipitation |
Implication of Tidal Forcing Effects on the Zonal Variation of Solstice Equatorial Plasma Bubbles Equatorial plasma bubbles (EPBs) are plasma depletions that can occur in the nighttime ionospheric F region, causing scintillation in satellite navigation and communications signals. Past research has shown that EPB occurrence rates are higher during the equinoxes in most longitude zones. An exception is over the central Pacific and African sectors, where EPB activity has been found to maximize during solstice. Tsunoda et al. (2015) hypothesized that the solstice maxima in these two sectors could be driven by a zonal wavenum ... Chang, Loren; Salinas, Cornelius; Chiu, Yi-Chung; , Jones; Rajesh, P.; Chao, Chi-Kuang; Liu, Jann-Yenq; Lin, Charles; Hsiao, Tung-Yuan; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2021   DOI: 10.1029/2020JA028295 Ionosphere; Atmospheric tides; equatorial plasma bubble; scintillation; vertical coupling; wind dynamo |
The impact of a stealth CME on the Martian topside ionosphere Solar cycle 24 is one of the weakest solar cycles recorded, but surprisingly the declining phase of it had a slow coronal mass ejection (CME) that evolved without any low coronal Thampi, Smitha; Krishnaprasad, C; Nampoothiri, Govind; Pant, Tarun; Published by: Monthly Notices of the Royal Astronomical Society Published on: YEAR: 2021   DOI: 10.1093/mnras/stab494 |
The impact of a stealth CME on the Martian topside ionosphere Solar cycle 24 is one of the weakest solar cycles recorded, but surprisingly the declining phase of it had a slow coronal mass ejection (CME) that evolved without any low coronal Thampi, Smitha; Krishnaprasad, C; Nampoothiri, Govind; Pant, Tarun; Published by: Monthly Notices of the Royal Astronomical Society Published on: YEAR: 2021   DOI: 10.1093/mnras/stab494 |
3.1 High-latitude F-region plasma irregularities The first radio instruments used to study the ionosphere in detail were ionosondes. Also known as a “vertical sounder,” an ionosonde provides a vertical plasma density profile of the Perrya, Gareth; Goodwina, Lindsay; Published by: Cross-Scale Coupling and Energy Transfer in the Magnetosphere-Ionosphere-Thermosphere System Published on: |
We use the \textlessi\textgreateram\textlessi/\textgreater, \textlessi\textgreateran, as\textlessi/\textgreater and the \textlessi\textgreateraσ\textlessi/\textgreater geomagnetic indices to the explore a previously overlooked factor in magnetospheric electrodynamics, namely the inductive effect of diurnal motions of the Earth’s magnetic poles toward and away from the Sun caused by Earth’s rotation. Because the offset of the (eccentric dipole) geomagnetic pole from the rotational axis is roughly twice as large in the so ... Lockwood, Mike; Haines, Carl; Barnard, Luke; Owens, Mathew; Scott, Chris; Chambodut, Aude; McWilliams, Kathryn; Published by: Journal of Space Weather and Space Climate Published on: YEAR: 2021   DOI: 10.1051/swsc/2020077 |
2020 |
Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017 We study the impact of the geomagnetic storm of 7\textendash9\ September\ 2017 on the low- to mid-latitude ionosphere. The prominent feature of this solar event is the sequential occurrence of two SYM-H minima with values of -146 and -115 nT on 8\ September at 01:08 and 13:56 UT, respectively. The study is based on the analysis of data from the Global Positioning System (GPS) stations and magnetic observatories located at different longitudinal sectors corresponding to the Pacific, Asia, Africa and the Amer ... Imtiaz, Nadia; Younas, Waqar; Khan, Majid; Published by: Annales Geophysicae Published on: 03/2020 YEAR: 2020   DOI: 10.5194/angeo-38-359-2020 |
Dynamical Properties of Peak and Time-Integrated Geomagnetic Events Inferred From Sample Entropy We provide a comprehensive statistical analysis of the sample entropy of peak and time-integrated geomagnetic events in 2001\textendash2017, considering different measures of event strength, different geomagnetic indices, and a simplified solar wind-magnetosphere coupling function Mourenas, D.; Artemyev, A.; Zhang, X.-J.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2020 YEAR: 2020   DOI: 10.1029/2019JA027599 Dynamical complexity; Entropy; geomagnetic indices; Geomagnetic storms; Solar wind magnetosphere coupling |
Major geomagnetic storms are caused by un-usually intense solar wind southward magnetic fields thatimpinge upon the Earth\textquoterights magnetosphere (Dungey, 1961).How can we predict the occurrence of future interplanetary events? Do we currently know enough of t ... Tsurutani, Bruce; Lakhina, Gurbax; Hajra, Rajkumar; Published by: Nonlinear Processes in Geophysics Published on: 01/2020 YEAR: 2020   DOI: 10.5194/npg-27-75-2020 |
Real-Time Thermospheric Density Estimation via Two-Line Element Data Assimilation Inaccurate estimates of the thermospheric density are a major source of error in low Earth orbit prediction. Therefore, real-time density estimation is required to improve orbit prediction. In this work, we develop a dynamic reduced-order model for the thermospheric density that enables real-time density estimation using two-line element (TLE) data. For this, the global thermospheric density is represented by the main spatial modes of the atmosphere and a time-varying low-dimensional state and a linear ... Gondelach, David; Linares, Richard; Published by: Space Weather Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019SW002356 density estimation; reduced-order modeling; satellite drag; thermospheric density modeling; two-line element data |
Influence of geomagnetic storms on the mid latitude D and F2 regions
Naidu, Pyla; Madhavilatha, Tirumalaraju; Devi, Malladi; Published by: Annals of Geophysics Published on: |
Dayanandan, Baiju; Paul, Bapan; Galav, Praveen; Published by: Published on: |
Response of the low-to mid-latitude ionosphere to the geomagnetic storm of September 2017
Imtiaz, Nadia; Younas, Waqar; Khan, Majid; Published by: Published on: |
Ionospheric and magnetic signatures of a space weather event on 25—29 August 2018: CME and HSSWs
Younas, W; Amory-Mazaudier, Christine; Khan, Majid; Fleury, R; Published by: Journal of geophysical research: space physics Published on: |
Correction to: Ionospheric response to the 25-26 August 2018 intense geomagnetic storm
Vaishnav, Rajesh; Jacobi, Christoph; Published by: Published on: |
Reidy, Jade; Fear, Robert; Whiter, Daniel; Lanchester, Betty; Kavanagh, AJ; Price, David; Chadney, Joshua; Zhang, Yongliang; Paxton, Larry; , others; Published by: Published on: |
Multiscale observation of two polar cap arcs occurring on different magnetic field topologies
Reidy, JA; Fear, RC; Whiter, DK; Lanchester, BS; Kavanagh, AJ; Price, David; Chadney, Joshua; Zhang, Y; Paxton, LJ; Published by: Journal of Geophysical Research: Space Physics Published on: |
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
Brückner, Marlen; Lonardi, Michael; Ehrlich, Andr\; Wendisch, Manfred; Jäkel, Evelyn; Schäfer, Michael; Quaas, Johannes; Kalesse, Heike; Published by: Published on: |
Paxton, Larry; Provornikova, Elena; Roelof, Edmond; emerais, Eric; Izmodenov, Vladislav; Katushkina, Olga; Mierkiewicz, Edwin; Baliukin, Igor; Gruntman, Mike; Taguchi, Makoto; , others; Published by: Published on: |
Ionospheric response to the 25-26 August 2018 intense geomagnetic storm
Vaishnav, Rajesh; Jacobi, Christoph; Published by: Published on: |
The atmosphere below 200 km over Norilsk at solar minimum and maximum
Yakovleva, OE; Kushnarenko, GP; Kuznetsova, GM; Published by: Solar-Terrestrial Physics Published on: |
Ionospheric and magnetic signatures of a space weather event on 25—29 August 2018: CME and HSSWs We present a study concerning a space weather event on 25–29 August 2018, accounting for its ionospheric and magnetic signatures at low latitudes and midlatitudes. The effects of a Younas, W; Amory-Mazaudier, Christine; Khan, Majid; Fleury, R; Published by: Journal of geophysical research: space physics Published on: YEAR: 2020   DOI: 10.1029/2020JA027981 |
order to examine if the variations in the TEC were caused by thermospheric composition changes in the southern high-latitude regions, we present O/N 2 maps obtained from the GUVI Shreedevi, PR; Choudhary, RK; Thampi, Smitha; Yadav, Sneha; Pant, TK; Yu, Yiqun; McGranaghan, Ryan; Thomas, Evan; Bhardwaj, Anil; Sinha, AK; Published by: Space Weather Published on: YEAR: 2020   DOI: 10.1029/2019SW002383 |
In this article, we present a study of the perturbations occurring in the Earth’s environment on 7 October 2015. We use a multi-instrument approach, including space and ground Molina, Maria; Dasso, S; Mansilla, G; Namour, Jorge; Cabrera, Miguel; Zuccheretti, Enrico; Published by: Solar Physics Published on: YEAR: 2020   DOI: 10.1007/s11207-020-01728-7 |