GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2021

The ionospheric response to high-intensity long duration continuous AE activity (HILDCAA) event (13--15 April 2005) over mid-latitude African region

The ionospheric responses to High-Intensity Long Duration Continuous Auroral Electrojet Activity (HILDCAA) event which happened following the CIR-driven storm were studied over the southern hemisphere mid-latitude in the African sector. The 13–15 April 2005 event was analysed to understand some of the mechanisms responsible for the ionospheric changes during HILDCAA event. The ionosonde critical frequency of F2 layer (foF2) and Global Navigation Satellite System (GNSS) Total Electron Content (TEC) were used to analyse the ...

Matamba, Tshimangadzo; Habarulema, John;

Published by: Advances in Space Research      Published on: jan

YEAR: 2021     DOI: 10.1016/j.asr.2020.10.034

CIR; HILDCAA; Ionospheric storm; PPEF; TEC; TIDs

2020

Ionospheric response at conjugate locations during the 7—8 September 2017 geomagnetic storm over the Europe-African longitude sector

This paper focuses on unique aspects of the ionospheric response at conjugate locations over Europe and South Africa during the 7–8 September 2017 geomagnetic storm including

Habarulema, John; Katamzi-Joseph, Zama; a, Dalia; Nndanganeni, Rendani; Matamba, Tshimangadzo; Tshisaphungo, Mpho; Buchert, Stephan; Kosch, Michael; Lotz, Stefan; Cilliers, Pierre; , others;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2020     DOI: 10.1029/2020JA028307

2017

Long-term analysis of ionospheric response during geomagnetic storms in mid, low and equatorial latitudes

Understanding changes in the ionosphere is important for High Frequency (HF) communications and navigation systems. Ionospheric storms are the disturbances in the Earth’s upper

Matamba, Tshimangadzo;

Published by:       Published on:

YEAR: 2017     DOI:

2016

Midlatitude ionospheric changes to four great geomagnetic storms of solar cycle 23 in Southern and Northern Hemispheres

This paper presents an investigation of ionospheric response to great (Dst<=\textendash350 nT) geomagnetic storms that occurred during solar cycle 23. The storm periods analyzed are 29 March to 2 April 2001, 27\textendash31 October 2003, 18\textendash23 November 2003, and 6\textendash11 November 2004. Global Navigation Satellite System, total electron content (TEC), and ionosonde critical frequency of F 2 layer (f o F 2 ) data over Southern Hemisphere (African sector) and Northern Hemisphere (European sector) midlatitudes ...

Matamba, Tshimangadzo; Habarulema, John; a, Dalia;

Published by: Space Weather      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/swe.v14.1210.1002/2016SW001516

Assessing ionospheric response during some strong storms in solar cycle 24 using various data sources

We present an analysis of a regional ionospheric response during six strong storms (-200\ nT\ <=Dst<=-100\ nT) that occurred in 2012 for the geographic latitudinal coverage of 10\textdegreeS\textendash40\textdegreeS within a longitude sector of 10\textdegreeE\textendash40\textdegreeE. Although these storms occurred during the same solar activity period and were all coronal mass ejection driven, their impacts and associated features on the ionosphere have been found different due t ...

Habarulema, John; Katamzi, Zama; Sibanda, Patrick; Matamba, Tshimangadzo;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/jgra.v122.110.1002/2016JA023066

2015

Statistical analysis of the ionospheric response during geomagnetic storm conditions over South Africa using ionosonde and GPS data

This paper presents a statistical analysis of ionospheric response over ionosonde stations Grahamstown (33.3\textdegreeS, 26.5\textdegreeE, geographic) and Madimbo (22.4\textdegreeS, 30.9\textdegreeE, geographic), South Africa, during geomagnetic storm conditions which occurred during the period 1996\textendash2011. Such a climatological study is important in establishing local ionospheric behavior trend which later forms a basis for accurate modeling and forecasting electron density and critical frequency of the\ 

Matamba, Tshimangadzo; Habarulema, John; McKinnell, Lee-Anne;

Published by: Space Weather      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/swe.v13.910.1002/2015SW001218

Geomagnetic storms; ionospheric storm effects; midlatitude ionosphere

2014

Statistical analysis of the ionospheric response during geomagnetic storm conditions over South Africa using ionosonde and GPS data

Matamba, Tshimangadzo; Habarulema, John; McKinnell, Lee-Anne;

Published by: Space Weather      Published on:

YEAR: 2014     DOI: https://doi.org/10.1002/2015SW001218

ionospheric storm effects; Geomagnetic storms; midlatitude ionosphere



  1