Notice:
|
Found 6 entries in the Bibliography.
Showing entries from 1 through 6
2022 |
Chapter 4 - Energetic particle dynamics, precipitation, and conductivity This chapter reviews cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system via convection, precipitation, and conductance. It begins with an introduction into Earth’s plasma sheet characteristics including particles, plasma moments, and magnetic fields, and their dependence on solar wind and interplanetary magnetic field parameters. Section 4.2 transitions to observations of the magnetosphere convection, precipitation, and coupling with the ionosphere on multiple scales, with Section ... Gabrielse, Christine; Kaeppler, Stephen; Lu, Gang; Wang, Chih-Ping; Yu, Yiqun; Nishimura, Yukitoshi; Verkhoglyadova, Olga; Deng, Yue; Zhang, Shun-Rong; Published by: Published on: jan YEAR: 2022   DOI: 10.1016/B978-0-12-821366-7.00002-0 Conductance; Conductivity; Convection; particle precipitation |
2021 |
Recent attention has been given to mesoscale phenomena across geospace (∼10 s km to 500 km in the ionosphere or ∼0.5 RE to several RE in the magnetosphere), as their contributions to the system global response are important yet remain uncharacterized mostly due to limitations in data resolution and coverage as well as in computational power. As data and models improve, it becomes increasingly valuable to advance understanding of the role of mesoscale phenomena contributions—specifically, in magnetosphere-ionosphere c ... Gabrielse, Christine; Nishimura, Toshi; Chen, Margaret; Hecht, James; Kaeppler, Stephen; Gillies, Megan; Reimer, Ashton; Lyons, Larry; Deng, Yue; Donovan, Eric; Evans, Scott; Published by: Frontiers in Physics Published on: |
2020 |
Robinson, RM; Kaeppler, Stephen; Zanetti, Larry; Anderson, Brian; Vines, Sarah; Korth, Haje; Fitzmaurice, Anna; Published by: Journal of Geophysical Research: Space Physics Published on: |
2019 |
As part of its International Capabilities Assessment effort, the Community Coordinated Modeling Center initiated several working teams, one of which is focused on the validation of models and methods for determining auroral electrodynamic parameters, including particle precipitation, conductivities, electric fields, neutral density and winds, currents, Joule heating, auroral boundaries, and ion outflow. Auroral electrodynamic properties are needed as input to space weather models, to test and validate the accuracy of phys ... Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; Liemohn, Michael; Weygand, James; Crowley, Geoffrey; Merkin, Viacheslav; McGranaghan, Ryan; Mannucci, Anthony; Published by: Space Weather Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018SW002127 |
Robinson, Robert; Zhang, Yongliang; Garcia-Sage, Katherine; Fang, Xiaohua; Verkhoglyadova, Olga; Ngwira, Chigomezyo; Bingham, Suzy; Kosar, Burcu; Zheng, Yihua; Kaeppler, Stephen; , others; Published by: Space Weather Published on: |
2014 |
Transequatorial Propagation and Depletion Precursors
Miller, Ethan; Bust, Gary; Kaeppler, Stephen; Frissell, Nathaniel; Paxton, Larry; Published by: Published on: |
1