Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2021 |
Latitudinal Dependence of Ionospheric Responses to Some Geomagnetic Storms during Low Solar Activity The Latitudinal dependence in the response of the Ionospheric F2-layer electron density (NmF2) and peak height (hmF2) to three geomagnetic storms of May and August 2010 has been examined. The data-sets used for the study were obtained from Ilorin, Nigeria (1.87° S/76.67° E), San Vito, Italy (34.68° N/90.38° E), Hermanus, South Africa (42.34° S/82.15° E), and Pruhonice, Czech Republic (45.66° N/90.38° E) geomagnetic coordinates. The quiet time result shows that the rise in NmF2 began earlier at San Vito, followed by P ... Joshua, B.; Adeniyi, J.; Olawepo, A.; Rabiu, Babatunde; Daniel, Okoh; Adebiyi, S.; Adebesin, B.; Ikubanni, S.; Abdurahim, B.; Published by: Geomagnetism and Aeronomy Published on: may YEAR: 2021   DOI: 10.1134/S0016793221030063 Electric field; Electron density; Geomagnetic storms; magnetosphere; peak height |
2018 |
Response of GPS-TEC in the African equatorial region to the two recent St. Patrick s day storms The 2015 St. Patrick’s Day storm is one of the most intense geomagnetic storm in this present solar cycle (SYM-H=-213nT). In this paper, we investigate the response of the African low Ikubanni, SO; Adebiyi, SJ; Adebesin, BO; Dopamu, KO; Joshua, BW; Bolaji, OS; Adekoya, BJ; Published by: International Journal of Civil Engineering and Technology Published on: |
2014 |
GPS derived TEC and foF2 variability at an equatorial station and the performance of IRI-model The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7\ = ... Adebiyi, S.J.; Odeyemi, O.O.; Adimula, I.A.; Oladipo, O.A.; Ikubanni, S.O.; Adebesin, B.O.; Joshua, B.W.; Published by: Advances in Space Research Published on: 08/2014 YEAR: 2014   DOI: 10.1016/j.asr.2014.03.026 |
Ionospheric response to magnetic activity at low and mid-latitude stations The F2-layer response to the moderate storm of 5\textendash7 April 2010 was investigated using data from two equatorial stations (Ilorin: lat. 8.5\textdegreeN, 4.5\textdegreeE; Kwajalein: lat. 9\textdegreeN, long. 167.2\textdegreeE) and mid-latitude (San Vito: lat. 40.6\textdegreeN, long. 17.8\textdegreeE; Pruhonice: lat. 50\textdegreeN, long. 14.6\textdegreeE). Before storm commencement, enhancement, and depletion of NmF2 values were observed in the equatorial and mid-latitude stations, respectively, in ... Adebiyi, Shola; Adimula, Isaac; Oladipo, Olusola; Joshua, Benjamin; Adebesin, Babatunde; Ikubanni, Stephen; Published by: Acta Geophysica Published on: 08/2014 YEAR: 2014   DOI: 10.2478/s11600-014-0205-x Electric field; equatorial station; Ionosphere; mid-latitude; moderate storm; positive phase |
1