Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2022 |
The hemispherical asymmetry of the low latitude region along 100°E ± 5°E is scrutinized for the year 2015 at magnetically conjugate points on seasonal and intra-seasonal time scales. Two conjugate Ionosonde station pairs are selected- one pair in the inner valley (from SEALION) and the other in the outer edges of the EIA region. The anomaly in the stations is estimated using the difference of low latitude NmF2 from the dip equatorial NmF2 in the same meridian. A monthly average scheme is used instead of a seasonal mean, ... Kalita, B.; Bhuyan, P.; Nath, S.; Choudhury, M.; Chakrabarty, D.; Wang, K.; Hozumi, K.; Supnithi, P.; Komolmis, T.; . Y. Yatini, C; Le Huy, M.; Published by: Advances in Space Research Published on: may YEAR: 2022   DOI: 10.1016/j.asr.2022.02.058 NmF2; asymmetry; Conjugate; EIA; model; Hemisphere; hmF2; Subsolar |
2018 |
We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22\textendash23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were larg ... Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; isson, Co; Hairston, M.; Coley, W.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2018 YEAR: 2018   DOI: 10.1002/jgra.v123.310.1002/2017JA024981 |
We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22–23 June 2015, which is the second largest storm in the current solar cycle. Astafyeva, E; Zakharenkova, I; Hozumi, K; Alken, P; isson, Co; Hairston, Marc; Coley, William; Published by: Journal of Geophysical Research: Space Physics Published on: YEAR: 2018   DOI: 10.1002/2017JA024981 |
Astafyeva, E; Zakharenkova, I; Hozumi, K; Alken, P; isson, Co; Hairston, Marc; Coley, William; Published by: Journal of Geophysical Research: Space Physics Published on: |
1