GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2020

Relationship between large-scale ionospheric field-aligned currents and electron/ion precipitations: DMSP observations

In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus

Xiong, Chao; Stolle, Claudia; Alken, Patrick; Rauberg, Jan;

Published by: Earth, Planets and Space      Published on:

YEAR: 2020     DOI: 10.1186/s40623-020-01286-z

2018

Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22\textendash23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques

We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22\textendash23 June 2015, which is the second largest storm in the current solar cycle. Our results show that at the beginning of the storm, the equatorial electrojet (EEJ) and the equatorial zonal electric fields were larg ...

Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; isson, Co; Hairston, M.; Coley, W.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2018

YEAR: 2018     DOI: 10.1002/jgra.v123.310.1002/2017JA024981

Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22—23 June 2015 geomagnetic storm using ground-based and spaceborne techniques

We use a set of ground-based instruments (Global Positioning System receivers, ionosondes, magnetometers) along with data of multiple satellite missions (Swarm, C/NOFS, DMSP, GUVI) to analyze the equatorial and low-latitude electrodynamic and ionospheric disturbances caused by the geomagnetic storm of 22–23 June 2015, which is the second largest storm in the current solar cycle.

Astafyeva, E; Zakharenkova, I; Hozumi, K; Alken, P; isson, Co; Hairston, Marc; Coley, William;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2018     DOI: 10.1002/2017JA024981

Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22—23 June 2015 geomagnetic storm using ground-based and spaceborne techniques

Astafyeva, E; Zakharenkova, I; Hozumi, K; Alken, P; isson, Co; Hairston, Marc; Coley, William;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2018     DOI:

2016

Prompt penetration electric fields and the extreme topside ionospheric response to the June 22--23, 2015 geomagnetic storm as seen by the Swarm constellation

Using data from the three Swarm satellites, we study the ionospheric response to the intense geomagnetic storm of June 22\textendash23, 2015. With the minimum SYM-H excursion of -207 nT, this storm is so far the second strongest geomagnetic storm in the current 24th solar cycle. A specific configuration of the Swarm satellites allowed investigation of the evolution of the storm-time ionospheric alterations on the day- and the nightside quasi-simultaneously. With the development of the main phase of the storm, a s ...

Astafyeva, Elvira; Zakharenkova, Irina; Alken, Patrick;

Published by: Earth, Planets and Space      Published on: 09/2016

YEAR: 2016     DOI: 10.1186/s40623-016-0526-x



  1