Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2022 |
This study investigates the sequence of solar and interplanetary events that drove the 1 June 2013 and October 2015 geomagnetic storms and how the American (68°–78oE) and African (32°–42oE) Equatorial Ionization Anomaly (EIA) regions responded to them. We constructed the EIA structures by using Total Electron Content (TEC) and ionospheric irregularities derived from Global Navigation Satellite System (GNSS) receivers along with the study locations. We also analyzed disturbed time ionospheric electric field and model da ... Oyedokun, Oluwole; Amaechi, P.; Akala, A.; Simi, K.; Ogwala, Aghogho; Oyeyemi, E.; Published by: Advances in Space Research Published on: mar YEAR: 2022   DOI: 10.1016/j.asr.2021.12.027 geomagnetic storm; total electron content; Corotating Interacting Region; ionospheric irregularities |
Accurate representation of ionospheric equivalent slab thickness (τ) and scale height (Hm) plays a crucial role in characterizing the complex dynamics of topside and bottomside ionospheric constituents. In the present work, we examined the corresponding morphologies of ionospheric profile parameters with collocated global positioning system (GPS) and Digisonde Portable Sounder (DPS) setups at an equatorial location in west Africa Ilorin (8.50°N, 4.68°E), during a low solar activity year 2010. The extracted τ from GPS and ... Odeyemi, Olumide; Adeniyi, Jacob; Oyeyemi, Elijah; Panda, Sampad; Jamjareegulgarn, Punyawi; Olugbon, Busola; Oluwadare, Esholomo; Akala, Andrew; Olawepo, Adeniji; Adewale, Adekola; Published by: Advances in Space Research Published on: jan YEAR: 2022   DOI: 10.1016/j.asr.2021.10.030 Global positioning system; Digital portable sounder; Equatorial latitude; Equivalent slab thickness; scale height |
This study investigates ionospheric responses to 2013 and 2015 St. Patrick’s Days (CME-driven), 1 June 2013 and 7 October 2015 (CIR-driven) geomagnetic storms over the African- Akala, AO; Afolabi, RO; Otsuka, Y; Published by: Advances in Space Research Published on: YEAR: 2022   DOI: 10.1016/j.asr.2022.10.029 |
2021 |
This work analyzes the geo-effectiveness of Coronal Mass Ejection- (CME-) induced storms by investigating the responses of ionospheric Vertical Total Electron Content (VTEC) and the Equatorial Ionization Anomaly (EIA) over the Indian sector to two storms. One of the storms occurred on February 19, 2014 (SYM-H: −120 nT), while the other occurred on June 23, 2015 (SYM-H: −204 nT). Both storms were driven by full halo CMEs. Global TEC maps were used to characterize VTEC variations during the storms. June 23, 2015 storm was ... Simi, K.; Akala, A.; Krishna, Siva; Amaechi, Paul; Ogwala, Aghogho; Ratnam, Venkata; Oyedokun, O.; Published by: Advances in Space Research Published on: oct YEAR: 2021   DOI: 10.1016/j.asr.2021.06.013 Coronal mass ejection; Disturbance dynamo electric field; geomagnetic storm; prompt penetration electric field; total electron content |
This study investigates the morphology of the GPS TEC responses in the African Equatorial Ionization Anomaly (EIA) region to intense geomagnetic storms during the ascending and maximum phases of solar cycle 24 (2012–2014). Specifically, eight intense geomagnetic storms with Dst ≤ −100 nT were considered in this investigation using TEC data obtained from 13 GNSS receivers in the East African region within 36–42°E geographic longitude; 29°N–10°S geographic latitude; ± 20°N magnetic latitude. The storm-time beh ... Oyedokun, O.; Akala, A.; Oyeyemi, E.; Published by: Advances in Space Research Published on: feb YEAR: 2021   DOI: 10.1016/j.asr.2020.11.020 African equatorial ionization anomaly; geomagnetic storm; GNSS; Ionosphere |
The capability of IRI-2016 in reproducing the hemispheric asymmetry, the winter and semiannual anomalies has been assessed over the equatorial ionization anomaly (EIA) during quiet periods of years 2013–2014. The EIA reconstructed using Total Electron Content (TEC) derived from Global Navigation Satellite System was compared with that computed using IRI-2016 along longitude 25° − 40oE. These were analyzed along with hemispheric changes in the neutral wind derived from the horizontal wind model and the TIMED GUVI columna ... Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew; Kaab, Mohamed; Younas, Waqar; Benkhaldoun, Zouhair; Khan, Majid; Mazaudier, Christine-Amory; Published by: Advances in Space Research Published on: aug YEAR: 2021   DOI: 10.1016/j.asr.2021.03.040 Equatorial ionization anomaly; hemispheric asymmetry; IRI-2016; Semiannual anomaly; Winter anomaly |
This study investigates the solar origins of August 26, 2018 geomagnetic storm and the responses of the interplanetary medium and equatorial/low-latitude ionosphere to it. We used a multiinstrument approach, with observations right from the solar surface to the Earth. Our results showed that the G3 geomagnetic storm of August 26, 2018 was initiated by a solar filament eruption of August 20, 2018. The storm was driven by an aggregation of weak Coronal Mass Ejection (CME) transients and Corotating Interaction Regions/High Spee ... Akala, A.; Oyedokun, O.; Amaechi, P.; Simi, K.; Ogwala, A.; Arowolo, O.; Published by: Space Weather Published on: YEAR: 2021   DOI: 10.1029/2021SW002734 |
1