GUVI

Global UltraViolet Imager

GUVI Biblio





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Extreme Positive Ionosphere Storm Triggered by a Minor Magnetic Storm in Deep Solar Minimum Revealed by FORMOSAT-7/COSMIC-2 and GNSS Observations

This study examines an unexpected and extreme positive ionospheric response to a minor magnetic storm on August 5, 2019 by using global ionosphere specification (GIS) 3D electron density profiles obtained by assimilating radio occultation total electron content (TEC) measurements of the recently launched FORMOSAT-7/COSMIC-2 satellites, and ground-based global navigation satellite system (GNSS) TEC. The results reveal ∼300\% enhancement of equatorial ionization anomaly (EIA) crests, appearing over 200–300 km altitudes, an ...

Rajesh, P.; Lin, C.; . Y. Lin, C; Chen, C.; . Y. Liu, J; Matsuo, T.; Chen, S.; Yeh, W.; . Y. Huang, C;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028261

FORMOSAT-7/COSMIC-2; Global Ionospheric Specification; ionospheric data assimilation; ionospheric response to magnetic storm; magnetosphere-ionosphere coupling; minor magnetic storm

2005

Large-scale variations of the low-latitude ionosphere during the October-–November 2003 superstorm: Observational results

The GPS-derived total electron content (TEC), ion drift measurements from the ROCSAT-1 spacecraft at around 600 km altitude, and far-ultraviolet airglow measured by the Global Ultraviolet Imager (GUVI) carried on board the NASA TIMED satellite are utilized for studying large disturbances of the low-latitude ionosphere during the October–November 2003 superstorm period. Two chains of GPS receivers, one in the American sector (∼70°W) and the other in the Asian/Australian sector (∼120°E), are used to simultaneously obse ...

Lin, C.; Richmond, A.; . Y. Liu, J; Yeh, H.; Paxton, L.; Lu, G.; Tsai, H.; Su, S.-Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2005     DOI: https://doi.org/10.1029/2004JA010900

ionospheric disturbances; Magnetic storm; TEC enhancement



  1