Global UltraViolet Imager

Local time dependence of the prompt ionospheric response for the 7, 9, and 10 November 2004 superstorms

<p>We investigate the effects of penetration electric fields, meridional thermospheric neutral winds, and composition perturbation zones (CPZs) on the distribution of low-latitude plasma during the 7\textendash11 November 2004 geomagnetic superstorm. The impact on low-latitude plasma was assessed using total electron content (TEC) measurements from a latitudinally distributed array of ground-based GPS receivers in South America. Jicamarca Radio Observatory incoherent scatter radar measurements of vertical E\texttimesB drift are used in combination with the Low-Latitude IONospheric Sector (LLIONS) model to examine how penetration electric fields and meridional neutral winds shape low-latitude TEC. It is found that superfountain conditions pertain between \~1900 and 2100UT on 9 November, creating enhanced equatorial ionization anomaly (EIA) crests at \textpm20\textdegree geomagnetic latitude. Large-amplitude and/or long-duration changes in the electric field were found to produce significant changes in EIA plasma density and latitudinal location, with a delay time of \~2\textendash2.5h. Superfountain drifts were primarily responsible for EIA TEC levels; meridional winds were needed only to create hemispherical crest TEC asymmetries. The [O/N2] density ratio (derived from the GUVI instrument, flown on the TIMED satellite) and measurements of total atmospheric density (from the GRACE satellites), combined with TEC measurements, yield information regarding a likely CPZ that appeared on 10 November, suppressing TEC for over 16h.</p>
Year of Publication
Journal of Geophysical Research
Date Published
ISSN Number