Deducing Non-Migrating Diurnal Tides in the Middle Thermosphere With GOLD Observations of the Earth s far Ultraviolet Dayglow From Geostationary Orbit

Abstract
The global-scale observations of the limb and disk (GOLD) Mission images middle thermosphere temperature and the vertical column density ratio of oxygen to molecular nitrogen (O/N2) using its far ultraviolet imaging spectrographs in geostationary orbit. Since GOLD only measures these quantities during daylight, and only over the ∼140° of longitude visible from geostationary orbit, previously developed tidal analysis techniques cannot be applied to the GOLD data set. This paper presents a novel approach that deduces two specified non-migrating diurnal tides using simultaneous measurements of temperature and O/N2. DE3 (diurnal eastward propagating wave 3) and DE2 (diurnal eastward propagating wave 2) during October 2018 and January 2020 are the focus of this paper. Sensitivity analyses using TIE-GCM simulations reveal that our approach reliably retrieves the true phases, whereas a combination of residual contributions from secondary tides, the restriction in longitude, and random uncertainty can lead to ∼50\% error in the retrieved amplitudes. Application of our approach to GOLD data during these time periods provides the first observations of non-migrating diurnal tides in measurements taken from geostationary orbit. We identify discrepancies between GOLD observations and TIE-GCM modeling. Retrieved tidal amplitudes from GOLD observations exceed their respective TIE-GCM amplitudes by a factor of two in some cases.
Year of Publication
2021
Journal
Journal of Geophysical Research: Space Physics
Volume
126
Number of Pages
e2021JA029563
ISSN Number
2169-9402
URL
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021JA029563
DOI
10.1029/2021JA029563
Download citation