Storm Time Effects on Latitudinal Distribution of Ionospheric TEC in the American and Asian-Australian Sectors: August 25–26, 2018 Geomagnetic Storm

Abstract
On the dayside of August 25–26, 2018 (main phase, MP of the storm), we unveiled the storm time effects on the latitudinal distribution of ionospheric total electron content (TEC). We used 17 and 19 Global Positioning System receivers in American and Asian-Australian sectors, respectively. Also, we employed a pair of magnetometers in each sector to unveil storm time effects on vertical E × B upward directed inferred drift velocity in the F region ionosphere. Also used is NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite airglow instrument to investigate storm time changes in neutral composition, O/N2 ratio. In this investigation, we corrected the latitudinal offset found in the works of Younas et al. (2020, https://doi.org/10.1029/2020JA027981). Interestingly, we observed that a double-humped increase (DHI) seen at a middle latitude station (MGUE, ∼22°S) after the MP on the dayside in American sector (Younas et al., 2020, https://doi.org/10.1029/2020JA027981) did straddle ∼23.58°N and ∼22°S. On August 25, 2018, storm commencement was evident in Sym-H (∼−8 nT) around 18:00 UT. It later became intensified (∼−174 nT) on August 26 around 08:00 UT. During storm s MP (after the MP), fountain effect operation was significantly enhanced (inhibited) in Asian-Australian (American) sector. Middle latitude TEC during MP got reduced in American sector (13:00 LT–15:40 LT) compared to those seen in Asian-Australian sector (13:00 LT–15:40 LT). The northern equatorial peak (∼25 TECU) seen at IHYO (14:00 LT) after MP in the American sector is higher when compared with that (∼21 TECU) seen at PPPC (11:40 LT) during MP in Asian-Australian sector.
Year of Publication
2021
Journal
Journal of Geophysical Research: Space Physics
Volume
126
Number of Pages
e2020JA029068
ISSN Number
2169-9402
URL
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020JA029068
DOI
10.1029/2020JA029068
Download citation